
ULTRA-FAST BIQUAD FILTERING
OPTIMIZED FOR CORTEX-M4/M7

Overview

This program implements the IIR/BIQUAD subroutine as described at
https://www.keil.com/pack/doc/CMSIS/DSP/html/group___biquad_cascade_d_f1.html

Subroutine name “arm_biquad_cascade_df1_fast_q15“. The initialization
subroutine “arm_biquad_cascade_df1_init_q15 “ is identical to CMSIS.

The code delivery consists in three folders:

- “DOC” : this documentation

- “KEIL” : uVision V5.12 project used as test-bench of the subroutine and CMSIS’s

- “C_BIQ_M4” : bit-exact arithmetic C-code simulator in VisualC2010

- “encrypted_file” : source code tar’d and coded with a key we send by email.

The folders are located at http://firmware-developments.com/WEB/P6x/BIQ_M4/

https://www.keil.com/pack/doc/CMSIS/DSP/html/group___biquad_cascade_d_f1.html
https://www.keil.com/pack/doc/CMSIS/DSP/html/group___biquad_cascade_d_f1.html
http://firmware-developments.com/WEB/P6x/BIQ_M4/
http://firmware-developments.com/WEB/P6x/BIQ_M4/
http://firmware-developments.com/WEB/P6x/BIQ_M4/
http://firmware-developments.com/WEB/P6x/BIQ_M4/

Details

The code reuses the same data structures, data format and APIs of the original
CMSIS library.

When compiled with option -O3 for Cortex-M4 this program runs 16% faster

than the original CMSIS library (KEIL ARM C-compiler V5.05).

The new API name is "arm_biquad_cascade_df1_fast_q15_fwd". It assumes the
even-order samples are aligned on four-bytes boundaries. There must be an
even number of samples to process (the constraint can be relaxed on demand).

The code is written in two files:
- one in C holding the loop on BiQuads (arm_biquad_cascade_df1_fast_q15_fwd)
- one in assembly processing one BiQuad (arm_biquad_cascade_df1_fast_q15_fwd_asm).
Here is the extract of the compilation MAP file for the code size:
arm_biquad_cascade_df1_init_q15 0x0000015d Thumb Code 26 arm_biquad_cascade_df1_fast_q15.o(.text)

arm_biquad_cascade_df1_fast_q15 0x00000177 Thumb Code 204 arm_biquad_cascade_df1_fast_q15.o(.text)

arm_biquad_cascade_df1_fast_q15_fwd 0x00000243 Thumb Code 94 arm_biquad_cascade_df1_fast_q15.o(.text)

arm_biquad_cascade_df1_fast_q15_fwd_asm 0x00000349 Thumb Code 168 arm_biquad_cascade_df1_fast_q15_fwd_asm.o(.text)

CPU load

The code speed is benchmarked on the KEIL simulator assuming 0 wait-state.

We advertised 7.5 cycles per sample with the following computations.

The critical loop takes 17 cycles per 16bits sample pairs (15 cycles on Cortex-M7
where the Load/Store unit can execute in parallel with ALU), on top of which you
add 1 cycles for loop-counter increment and 3 cycles for the conditional loop
branch.

The code complexity is then 21 cycles per sample pairs without unrolling the
loop.

When a loop of 1000 samples was processed through 2 BiQuads with the original
CMSIS code in 25.1kcycles this subroutine takes 21.2kcycles with the same
saturation control

 The subroutine uses 36 bytes of stack more than the original one. The stack
usage goes then from about 136 bytes to 172bytes. This can be substantially
optimized on request.

API

Documentation extracted from https://www.keil.com/pack/doc/CMSIS/DSP/html/group___biquad_cascade_d_f1.html

void arm_biquad_cascade_df1_fast_q15_fwd (

 const arm_biquad_casd_df1_inst_q15 * S,
 q15_t * pSrc, q15_t * pDst,
 uint32_t blockSize
Parameters
 [in] *S points to an instance of the Q15 Biquad cascade structure.
 [in] *pSrc points to the block of input data.
 [out] *pDst points to the block of output data.
 [in] blockSize number of samples to process per call.

Returns
 none.

Scaling and Overflow Behavior:
This fast version uses a 32-bit accumulator with 2.30 format. The accumulator maintains full precision of the
intermediate multiplication results but provides only a single guard bit. Thus, if the accumulator result overflows it
wraps around and distorts the result. In order to avoid overflows completely the input signal must be scaled down by
two bits and lie in the range [-0.25 +0.25). The 2.30 accumulator is then shifted by postShift bits and the result

truncated to 1.15 format by discarding the low 16 bits.

https://www.keil.com/pack/doc/CMSIS/DSP/html/group___biquad_cascade_d_f1.html
https://www.keil.com/pack/doc/CMSIS/DSP/html/group___biquad_cascade_d_f1.html

