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ABSTRACT
Digital audio systems are unlike conventional analog systems in which signals can be any value between a
minimum to maximum and occur continuously in time.  Digital audio systems use finite precision in
representing signals and coefficients and in performing arithmetic operations.  Consequently, system
performance is determined by the precision that is used throughout the system. This paper discusses the factors
that influence the performance of Infinite Impulse Response filters in high performance audio applications using
fixed point arithmetic.
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INTRODUCTION

Unlike conventional analog signal processing in which signals can
be any value between a minimum to maximum and occur
continuously in time - digital signal processing uses a finite
precision in representing signals and coefficients and finite
precision arithmetic in determining the response.  To a large
degree, the system performance is determined by the number of
bits used to represent the signal, filter coefficients and perform the
operations.

Naturally this brings up the question "How many bits are
enough?"

Digital filters are used in a variety of digital audio signal processing
functions. A few of the more common uses of digital filters are
shown in Table 1.

Application Filter
Tone Controls Bass and treble shelf filters

Graphic and
Parametric Equalizers

Band gain and cut filters

3 D spatial effects
and Head Related
Transfer Functions

Phase shift, Band-gain and
band-cut filters

Multi-channel
Decoders

Sub woofer and Bass
Management Filters.  Small /

Large loudspeaker filters

Table 1 Filter Applications

This paper gives an overview of the relationship of precision to
performance for second order Infinite Impulse Response (IIR)
filters. To illustrate the trade-offs, two digital filtering examples
will be described: a parametric equalizer and a loudspeaker
crossover.

IIR DIGITAL FILTERS

The primary construct that is used to describe digital filters is the
difference equation. The difference equation describes the output in
terms of past and present inputs and previous outputs.  The present
input and output is specified as a function of n.  n-1 indicates the
previous output. The difference equation to describe a second order
filter is shown in Equation 1:

y(n) = b
0
 x(n) + b

1 
x(n-1) + b

2 
x(n-2) –

          a
1 
y (n-1) - a

2
 y (n-2)

Equation 1 Second Order Difference Equation

In this equation, we see that the nth sample of the output y is a
weighted sum of the inputs x (n), x (n-1), and x (n-2) plus the
weighted sum of previous outputs y (n-1) and y (n-2).  The
weighting factors, or filter coefficients, for the system input x, are
bo, b1, and b2.   The coefficients for the system output, y, are -a1

and -a2.

Another way of describing the system response is the system
transfer function.  The system transfer function is produced by
taking the Z transform of the difference equation and reordering
terms to form Equation 2.

H(z) = Y(z) = b
0
 + b

1 
z -1 + b

2 
z -2

           X(z)   1 + a
1 
z -1 + a

2
 z -2

Equation 2 Transfer Function

There are a number of ways that the difference equation can be
implemented in a digital system.  In this discussion we will focus
upon the second order Direct Form I filter architecture which is
shown in Figure 1.  As will be discussed later, this implementation
architecture has often been used, because it is less prone than many
other structures to producing numeric overflow and noise from
zero-input limit cycles. The Z-1 blocks shown in the figure are
single sample delays. The multiplication of the y and x terms with
the a and b coefficients are shown by the coefficient labels over the
arrows.

Z -1

Z -1Z -1

Z -1

X(n) Y(n)+

+

+

+

b0

b1

b2

-a1

-a2

X(n - 1)

X(n - 2)

Y(n - 1)

Y(n - 2)

Audio In Audio Out

Figure 1 Direct Form I Second Order IIR Filter

Performance Factors

In digital processing, precision refers to the number of bits, or
numeric resolution, that is used to represent the input signal,
coefficients, intermediate calculations, and the resulting output.
As will be discussed in more detail in the subsequent sections,
precision drives filter performance in four ways:

− Coefficient Precision and Quantization Errors
− Round-off and Quantization Errors in Filter Calculations
− Overflow, Underflow, and Scaling
− The computation method

The consequences of increasing or decreasing the precision affect
the filter performance in two ways:
− Response Accuracy
− Signal to Noise Ratio

Coefficient Quantization

Quantization is a process where a continuous value (a real number)
is translated into a fixed precision representation. The difference
between the original value and the quantized value is the
quantization error.

Figure 2  illustrates the numerical effects of quantization upon a
value.  In this example a value on the x-axis is quantized, using
magnitude truncation, into one of 8 levels that are shown on the y-
axis. Using additional precision to more accurately represent the
value will reduce the quantization error.
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Figure 2 Quantization Effects

The effect of the quantization error is to perturb the filter
coefficients from their ideal values. This produces a filter response
that is different from the desired filter in amplitude, phase and/or
frequency.  The magnitude of this difference is related to
quantization error and the sensitivity of the filter. The difference
between the desired response and the response produced by
coefficient quantization is the response error of the filter.

The following example illustrates the filter response deviation
characteristics that are produced by coefficient quantization. The
example is a 48 kHz sample rate parametric equalization filter that
has a gain of 6 dB at 100 Hz with a Q of 6.7.   The amplitude
response of the filter is shown in Figure 3.

Magnitude Response
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Figure 3  Example filter transfer function

Figure 4 illustrates the signed amplitude error that is produced
using 24 bit quantization. The coefficients are encoded using a
twos complement binary format with 4 bits assigned for the integer
and 20 bits assigned for the fractional values. The positive to
negative swing of the amplitude error indicates that a portion of the
error is attributable to a shift in the frequency response.

As shown in Figure 5, the absolute value error amplitude can
increase substantially as the number of bits used to represent the
coefficients decreases. The amplitude response errors that are
shown in the figure are not unusual cases.  These are representative
of the response errors produced by a number of filters with center
frequencies near 100 Hz and Q's of 6.   However, there can be
considerable variability in the size of the error for other
combinations of gain, center frequency and filter Q.
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Figure 4 EQ filter at 100 Hz with 48 kHz Sample Rate

Figure 5 Response error for 48 kHz sample rate filter

Response errors that are produced by coefficient quantization can
vary with respect to several factors.  In general, the filter response
error will increase when:

− Filter center frequency decreases
− Q of the filter increases
− Sample rate increases
− Filter gain increases

Figure 6 shows the substantial increase in the response error when
the filter frequency decreases to 50 Hz. In this example, the
magnitude of the filter response error produced by 20 bit
coefficient quantization is greater than the 6 dB gain of the filter.
As illustrated in these examples, 20 bit coefficients at 48 kHz
sample rates can produce substantial filter response errors at low
frequencies.  Similarly, as the sample rate is increased, the
response error due to quantization can increase substantially.

Figures 7 and 8 illustrate the limitations of using 24 bits to
represent the coefficients at 96 and 192 kHz sample rates.  In the
192 kHz example, the filter response error produced by 24 bit
coefficient quantization is greater the than the 6 dB gain of the
filter.
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Figure 6 EQ filter at 50 Hz with 48 kHz Sample Rate

Figure 7 EQ filter at 50 Hz with 96 kHz Sample Rate

Figure 8 EQ filter at 50 Hz with 192 kHz Sample Rate

From these examples we can see that coefficient precision can
significantly affect the filter accuracy.   To achieve filter response
errors that are less than 10% of the desired filter response at 96 and
196 kHz sample rates, coefficient sizes of 28 bits or larger are
required.

Round-off and Quantization Errors in Filter Calculations

Quantization also impacts system performance when it occurs in
the filter response calculation. Quantization occurs in the filter
response due to the physical constraints of the processing
architecture. An example of this is illustrated in the second order
Direct Form 1 filter architecture shown in Figure 9.

Z-1

Z-1Z-1

Z-1

X(n) Y(n)+

+

+

+

b0

b1

b2

-a1

-a2

Q

A bits A+B bits A bitsB bits A+B bits

Figure 9  Implementation of a Digital Filter

In this figure, the input signal and the output signal are represented
in A bits. The a and b coefficients are all represented in B bits.
Registers of size B bits produce the input and output delayed
signals.  The multiplication of the input and output signals with the
b and a coefficients is performed by a A bit by B bit multiplier that
produces an A+B bit result. An A+B bit wide adder is then used to
sum the products of the multiplier and compute the unquantized
filter response.

In this example, quantization occurs at the output of the adder, the
highlighted "Q" block, where the A+B bit result is quantized into A
bits. This quantization step produces a quantization error.

The quantization error is the noise source of the digital filter.  The
noise characteristics are determined by the quantization error
characteristics, error magnitude and type of quantization that is
performed (round-off, twos complement, or signed magnitude
truncation).

The noise output, f (n), from the filter is a function of the noise
source, e (n) and the a coefficients of the filter as shown in
Equation 3 and in Figure 10.

f(n) = e(n) - a
1 
f(n-1) - a

2 
f(n-2)

Equation 3 Filter Noise
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Z-1

Z-1Z-1

Z-1

X(n) Y(n) + f(n)

+

+

+

+

b0
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-a1
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+

e(n)

Figure 10 Digital Filter Noise

To preserve as much as possible of input signal SNR, we would
like to have the noise amplitude below the smallest signal
amplitude of interest, as shown in Figure 11.

Because the filter noise is proportional to the quantization error and
the quantization error is reduced by increasing the calculation
precision, the filter noise is reduced by increasing the calculation
precision. This is achieved by increasing the precision of the signal
representation above the number of bits that are absolutely
necessary to represent the input signal.  These additional bits are
called noise bits.

Signal bits
output

Noise
Floor

Noise position as a
result of additional

precision

 Ideal Input Desired Output

Signal bits
output

Noise
Floor

Noise with no

added precision

Possible Output

Filter
OperationSignal bits

input

Figure 11  Impact of Additional Precision for Noise

How many noise bits are enough?

To illustrate the characteristics of truncation noise in IIR filters, a
parametric equalization filter is evaluated at several frequencies.
Figure 12  shows the Signal Transfer Function of a parametric
equalization filter with a gain of 12 dB and a Q of 6.667 for a full-
scale sine wave across the spectrum. To show the impact of
frequency, the filter is evaluated at 1000 Hz, 100 Hz, and 30 Hz.
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Figure 12  Equalization Filter Response for 16 bit 48 kHz Data

As we will see, in the case of parametic equalization filters, the
magnitude of noise response increases when:
− Filter Q increases
− Sample rate increases
− Filter frequency decreases

The noise transfer function is used to show the amplitude of filter
noise with respect to frequency. The noise transfer function is
computed by collecting the terms of the noise difference equation
shown in Equation 3  and taking the z-transform. The Noise
Transfer Function (NTF) has the form:

2
2

1
11

1
−− ++

=
zaza

NTF ;

Equation 4 Noise Transfer Function

For magnitude truncation,  the characteritics of the noise source
are:
− Uniform distribution over +/- 2-2b, where b is the number of

noise bits.

− The variance is:    
3

2 2
2

b

q

−

=σ

The variance at the filter output noise is:

∑
∞

−∞=

=
n

qqF nh )(222 σσ ,where hq are samples of the impulse

response function of the NTF.

Figure 13 shows the Noise Transfer Function of the three
parametric equalization filters using 8 and 16 noise bits.

The 0 dB line of the graph represents the lowest signal amplitude
of interest, which is the lowest amplitude and the noise floor of the
the ideal input signal.  In this figure, we can see that 8 noise bits
are sufficent to keep the 1000 Hz filter noise below the 0 dB
threshold, but are not sufficient for the 100 or 30 Hz filters.
Similarly, the 16 bits are sufficient to keep 1000 and 100 Hz filters
below the 0 dB threshold.   However, at 30 Hz, the noise cuts into
the signal response by 11 dB.
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Figure 13 Equalization Filter Noise for 48 KHz Data

It is important to note that because the noise level is specified with
respect to the number of noise bits – that Figure 13  is applicable
for any signal precision.

Figure 14 shows the difference of the signal and noise transfer

functions for 16 bit data with 8 and 16 noise bits.  This graph
shows the signal-to-noise ratio of each filter at each frequency.

Figure 14  Difference Transfer Function for 16 bit 48 kHz Data

When the data precision is increased to 24 bits, the noise does not
increase proportionately. It continues to occupy the same relative
amplitude with respect to the minimum signal level as shown in
Figure 15.
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Figure 15 Difference Transfer Function for 24 bit 48 KHz data

Figure 16 and 17 show the increase in the noise amplitude when
the sample rate is increased to 96KHz and 192 kHz.

These examples emphasize the importance of precision on digital
performance.

For these particular filters, 16 or more noise bits are sufficient to
preserve all of the input signal SNR for the 1000 and 100 Hz filters
at sample rates of 48 kHz and 96 kHz.  However, even with 16
noise bits there is some degradation of the input signal SNR at 30
Hz.   To preserve all of the input SNR would take 20 noise bits.
Similarly, for these filters at sample rates of 192 kHz, 20 noise bits
are sufficient to preserve the input SNR for the 100 and 1000 Hz
filters.  At 192 kHz even with 20 bits, there is a some degradation
of the input SNR at 30 Hz.

Figure 16  96 kHz Noise Transfer Function
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Figure 17 192 kHz Noise Transfer Function

It is important to note that while these examples are representative
of equalization filters at these frequencies with Qs of 6.7, they do
not represent the best or worst cases of signal or noise.  Differences
in filter parameters, center frequencies or filter types types will
produce signal and noise characteristics that can be better or worse.

Zero Input Limit Cycles

The linear modeling that we have used for assessing the impact of
quantization (or round-off) noise is sufficiently accurate for most
analysis, except for one notable exception. This exception is the
case of zero-input limit cycles, which are a non-linear phenomenon.
Zero-input limit cycles produce periodic or "tone" components in
the output in response to zero and small amplitude sinusoidal
inputs. This behavior is best controlled by careful system design.
The most effective means to prevent limit cycles relies upon using
cascaded sections of second order Direct Form I filters and
magnitude truncation quantization.  

Overflow, Underflow, and Scaling

Overflow occurs during the calculation of the digital filter response
when the result exceeds the largest number that can be represented.
There are two principle instances were this occurs.  Overflow can
occur when the gain of one or more cascaded filters amplify the
signal so that it exceeds the largest number that can be represented.
An example of this case is when two cascaded filters are used to
produce a twin peak response by subtraction, shown in Figure 18.
If the positive gain filter precedes the negative gain filter, a full-
scale signal input would be amplified by 20dB.  This could produce
an overflow condition.

Figure 18 Summation of Filters

Overflow can also occur within the computation of a single filter
stage for those filter types that have large coefficient values even
though the filter has only a modest overall signal gain.  In the
second case, overflow occurs during the intermediate calculations
as a result of the signal multiplication with one or more large
coefficients.

There are several approaches that can be employed to prevent
overflow:

  Solution    Implementation Trade-off
In the case of cascaded
filter gains –
Reorder the order of the
filters

Very useful approach.
However, it is not sufficient to
meet all cases

In the case of cascaded
filter gains –
Avoid the use of filters with
positive gains

Using only negative gains can
reduce the signal amplitude and
compromise the SNR.

In the case of large
coefficients –
Avoid filters with large
coefficient magnitudes or
implement the response
using two filters that have
smaller coefficient
magnitudes

This complicates the
implementation, may not
achieve the desired filter
response,  and consumes scarce
processing resources

In both cases –
Scale down the input signals

In the case of scaling with no
increase in precision, the signal
is shifted into the noise bit
positions resulting in lowered
SNR performance. I.e. we have
fewer noise bits

In both cases –
Add sufficient precision in
the processing architecture
to accommodate the
calculations

No trade-off – simple
implementation  - good
performance
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The preferred solution is to have additional precision in the
processing architecture to accommodate the range of expected
range of amplitudes without degrading the SNR performance.  This
can be accomplished by either adding this additional precision as
headroom bits to extend the internal maximum signal amplitude or
by adding additional noise bits to reduce the noise floor. The
difference between the two solutions is how frequently and when
scaling is performed. Figure 19 shows how additional headroom
bits permit filters with positive gains to be used to create a desired
filter response.

Maximum Signal
Amplitude

Signal bits
output

Noise Floor from
the additional
precision

 Ideal Input Desired Output

Reduced
SNR signal
output

Noise
Floor

Possible Outputs

Positive Filter
or Coefficient
GainSignal bits

input

Overflow Headroom Bits

Figure 19 Importance of Added Precision for Overflow
Conditions

The number of additional bits that are necessary to prevent
overflow is dependent upon the permitted gains, filter types and
filter parameters for a given sample rate. As previously discussed
in the case of cascaded filters, intermediate gains of 18 to 24 dB
are common.  In the case of large coefficient values, although most
filters have coefficient magnitudes that are between 0 and 2, there
are a few frequently used audio filters that can have relatively large
coefficients.  The Treble Shelf is a commonly used audio filter that
has relatively high coefficient magnitudes for relatively modest
gains and frequencies.  The transfer function of a 1 kHz Treble
Shelf with a gain of 12 dB is shown in Figure 20.
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Figure 20 Treble Shelf Transfer Function

The coefficients for the Treble Shelf filter are:

b
0
  3.795621 a

1
  -1.80957

b
1
  -7.226886 a

2
   0.825762

b
2
   3.44797

From observation we can see that to accommodate the signal gain
produced by the largest coefficient magnitude will require
approximately 4 additional bits of precision.  Although not shown
here - subsequent dynamic analyses of the filter behavior indicate
that one additional bit is required to prevent overflow for signals
with high transient characteristics.

To accommodate both cascaded filters and large coefficient gains,
8 additional bits of precision appear to be sufficient to prevent
overflow for most applications. These will be added to the most
significant bit positions, as headroom bits. The advantage of adding
headroom bits in comparison to noise bits is that the system is able
to represent intermediate signal levels that are greater than the
maximum input signal magnitude for typical cases.  As a result, the
headroom bits can eliminate the need to reduce the magnitude of
input signal prior to filter processing, and then increase the
magnitude of the result after filter processing, in many cases.  The
input to a filter or cascaded series of filters is reduced in
exceptional cases where very large gains are used.  The output
signal  magnitude is reduced when the total gain is greater than 1.

Underflow occurs when the result becomes so small that some
signal information is irrecoverably lost.  As in the case of overflow,
this can occur for specific filters that have one or more small
coefficients although the overall filter loss is modest.  In these
cases, the multiplication of the input and small coefficient values
can produce an intermediate signal magnitude that is less than the
smallest signal magnitude that can be represented with full input
signal precision.  There are two potential approaches that may be
employed to prevent underflow:

Solution Implementation Trade-off
The filter may be
implemented in two filters
that have larger coefficient
values

This complicates the
implementation and
consumes additional
processing resources

Have sufficient precision in
the processing architecture
to insure that the signal
information is preserved

No trade-off – simple
implementation  - good
performance

The preferred solution is to include sufficient precision in the
processing architecture to insure that the minimum signal level can
be preserved. The proposed solution to add 16 noise bits that is
discussed in the section "Finite Precision Arithmetic in Filter
Calculations" is sufficient to preserve SNR and prevent underflow
for most applications.  As we can see, the term "noise bits" is bit of
a misnomer because these bits not only reduce the noise floor, but
they also preserve signal information.
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PRACTICAL APPLICATIONS OF DIGITAL FILTERS

To provide additional insight in the application and impact of
precision in digital filter, examples of two practical digital
applications are shown.  The first example is an equalization of a
small monitor loudspeaker. The second example is an electronic
crossover for a 3 way loudspeaker. The filter architecture chosen
for both of these examples is a IIR filter structure which is
composed of cascaded sections of second order Direct Form I
filters that use magnitude truncation. The filters will use 28 bit
coefficients.  The processing architecture is a 48 bit fixed point
architecture to support 24 data bits, 8 overhead and 16 noise bits.
This architecture is illustrated in Figure 21. The multiplier accepts
a 28 bit coefficient by 48 bit data multiplication to produces a 76
bit result. The Q block quantizes the signal from 76 bits to 48 bits.
The adder and accumulators will support 76 bit add and
accumulation.   The signal path between each of the IIR filters is 48
bits. At the conclusion of processing, the result is truncated to the
desired output length of 24 or 32 bits. Unless other wise specified,
the data sample rate is 48 kHz for the examples.

Z-1

Z-1Z-1

Z-1

X(n) Y(n)
+

+

+

+

b0

b1

b2

-a1

-a2

Q
48 bits 76 bits 76 bits 48 bits

28 bits

28 bits

28 bits

28 bits

28 bits

Figure 21 Processing Architecture

Loudspeaker Equalization Example

In this example, a two-way bass reflex (or ported) monitor
loudspeaker is equalized to provide a frequency response that is flat
with a gradual –5 dB de-emphasis of the high frequencies.  The
monitor has a 5 "inch woofer and a 1" soft dome tweeter.  The port
tuning is at 85 Hz. The uncorrected frequency response of the
loudspeaker is shown in Figure 22.

The objectives of this equalization is to reduce the variations in the
overall frequency response, extend the low frequency response, and
improve the power handling of low frequency information.  The
improvement in the power handling of low frequency information
is needed to eliminate distortion and noise that is produced by the
loudspeaker by 50 Hz and lower tones when played at levels
exceeding 15 watts.

Figure 22 Frequency Response of Monitor Loudspeaker

The equalization developed for this example uses 8 cascaded
second order IIR filters. Figure 23 shows the corrected loudspeaker

response (shown in Red). Tables 2  a and b contain the filter
parameters.

               Filter Type         Freq
Butterworth
High Pass

40

Butterworth
High Pass

50

Table 2 a High Pass Filters

Filter Type          Freq      Gain          BW
Parametric EQ 85 15.0 20
Parametric EQ 135 - 13.0 20
Parametric EQ 188 -5.0 20
Parametric EQ 1300 - 7.5 522
Parametric EQ 2100 14.0 102
Parametric EQ 5500 - 10.0 750

Table 2 b Parametric Filters

Figure 23 Equalized Response

The two high pass Butterworth filters provide a fourth order high
pass filter that improves the loudspeaker power handling at low
frequencies.  This filter reduces low frequency energy that is sent to
the loudspeaker for frequencies below the loudspeaker resonant
frequency.   For frequencies that are above the resonant frequency
of the loudspeaker, the cabinet provides an acoustic load to the
woofer, which dampens the woofer's motion.  However, below the
resonant frequency the woofer becomes acoustically unloaded.  At
these frequencies only a relatively modest amount of energy is
necessary to cause the woofer to move out to the suspension limits,
thereby producing noise and distortion.

The equalization filters at 85, 135, and 188 Hz flatten and extend
the low frequency response of the loudspeaker over the interval of
75 Hz to 210 Hz.

The 1300, 2100 and 5500 Hz equalization filters compensate for
the response irregularities of the woofer and tweeter on either side
of the crossover frequency of 3200 Hz.
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The following set of figures show the individual and collective
characteristics of the filters that are used to perform the
equalization.
Figure 24 shows the transfer functions of the 8 individual filters
that were used to produce the equalized response.
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Figure 24 Transfer functions of the 8 individual filters

Figure 25 shows the noise transfer functions of the 8 individual
filters that were used to produce the equalized response.
Figure 26 shows the difference transfer functions of the 8
individual filters that were used to produce the equalized response.
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Figure 25 Noise Transfer Functions of the 8 individual filters –
16 Noise Bits
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Figure 26 Difference Transfer Functions of the 8 individual
filters – 16 Noise Bits
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Figure 27 Total System Signal Transfer Function

As shown Figure 28, the noise produced by the filter is less than
the noise floor of an ideal 24 bit input (144.49 dB) for all
frequencies.  Figure 29 shows the signal to noise difference is
better than an ideal input for all frequencies above 21 Hz.  The
SNR drops below 144 dB below 21 Hz as a result of the signal
attenuation from two 2nd order high pass filters at 40 and 50 Hz.
This excellent performance is a result of using 28 bit coefficient
and 48 bit data word (24 data bits, 8 headroom bits, and 16 noise
bits).

To illustrate the impact of 16 versus 8 noise bits, the total system
noise and total system difference transfer functions are shown in
Figures 30 and 31 for an 8 noise bit system.  These figures
illustrate that, by using only 8 noise bits, the filter will only achieve
144 dB performance for frequencies above 500 Hz.
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Figure 28 Total System Noise Transfer Function – 16 Noise
Bits
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Figure 29 Total System Difference Transfer Function – 16
Noise Bits
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Figure 30 Total System Noise Transfer Function – Using 8
Noise bits
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Figure 31 Total System Difference Transfer Function – Using 8
Noise bits

Loudspeaker Crossover Example

To gain additional insight into the effect of precision on filter
performance, a digital crossover application is investigated. In this
example a digital crossover is developed for a three-way
loudspeaker.  The loudspeaker is composed of a 12 inch woofer, a
5 inch midrange and a one inch soft dome tweeter.  The woofer is
in a vented cabinet.  The midrange is in an acoustic suspension
cabinet. The design objective is to develop a maximally flat
response using crossovers that provide second order acoustic
responses. The following figure depict the crossover and
equalization filters that were developed for the three loudspeaker
transducers.

Figure 32 shows the uncorrected woofer response (blue) the target
response (black), and the maximum and minimum thresholds for
the target response (magenta).

Figure 32 Woofer Response and Target Response

Figure 33 shows the preceding figure with the addition of the
shaped woofer response (red).

   Woofer Response

Upper Thresh
Target
Lower Thresh
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Figure 33 Woofer Target Crossover and Equalization

Table 3 contains the filter descriptions used to develop the woofer
response. The filter complement for the woofer contains a 15 Hz
high pass Linkwitz Riley second order high-pass filter to decrease
the electrical energy the woofer that is below the acoustic
resonance of the tuned cabinet.  The woofer high frequency
response is shaped by the 100 Hz second order Linkwitz Riley low-
pass plus the 200 and 532 Hz Equalization filters. Figure 34 shows
the individual woofer signal transfer functions.

Type     Gain     Freq     BW
Linkwitz
Riley HP

15

EQ 3 70 20
Linkwitz
Riley LP

100

EQ 10 200 50
EQ -4.9 532 92

Table 3 Woofer Crossover and Equalization filters
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Figure 34 Woofer Signal Transfer Functions

Figure 35 shows the uncorrected midrange response (blue) and the
shaped midrange response (red).

Figure 35 Midrange Target Crossover and Equalization

Table 4 contains the filter descriptions used to develop the
midrange response. The midrange low frequency response is
shaped by the 250 Hz second order Linkwitz Riley high-pass plus
the 125, 240, and 321 Hz Equalization filters. The midrange high
frequency response is shaped by the 3600 Hz second order
Linkwitz Riley low-pass and the 7397 Hz Equalization filters.

  Filter Type          Gain     Freq      BW
Linkwitz Riley
HP

250

Equalization -22 125 30
Equalization 8 240 300
Equalization 14.5 321 76
Linkwitz Riley
LP

3600

Equalization -5.3 7397 2242

Table 4  Midrange Crossover and Equalization filters

Figure 36 shows the individual midrange signal transfer functions.
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Figure 36 Midrange Signal Transfer Functions

Figure 37 shows the uncorrected tweeter response (blue) and the
shaped tweeter response (red).

Shaped
Response
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Figure 37 Tweeter Target Crossover and Equalization

Table 5 contains the filter descriptions used to develop the tweeter
response. The tweeter low frequency response is shaped by the
3600 Hz second order Linkwitz Riley high-pass plus the 2000 Hz
bass shelf filters.  The high frequency response of the tweeter is
shaped by the 3000 Hz treble shelf and the 18939 Hz equalization
filters.

            Filter Type            Gain          Freq        Bandwidth
Bass Shelf -8 2000
Linkwitz Riley HP 3600
Treble Shelf 5 3000 1000
Equalization -4 18936 1655

Table 5 Tweeter Crossover and Equalization filters
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Figure 38 Tweeter Signal Transfer Functions

Figures 39 a, b and c show the woofer, midrange and tweeter signal
transfer functions.
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Figure 39 a  Woofer Signal Transfer Function
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Figure 39 b  Midrange Signal Transfer Function
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Figure 39 c  Tweeter Signal Transfer Function
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Figures 40 a, b and c show the woofer, midrange and tweeter noise
transfer functions.
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Figure 40 a Woofer Noise Transfer Function
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Figure 40  b  Midrange Noise Transfer Function
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Figure 40 c  Tweeter Noise Transfer Function

Figures 41 a, b and c show the woofer, midrange and tweeter
difference transfer functions.
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Figure 41 a  Woofer Difference Transfer Function
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Figure 41  b  Midrange Difference Transfer Function
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Figure 41  c  Tweeter Difference Transfer Function
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As can been seen in the Noise Transfer Function plots, Figures 40
a, b and c, the noise produced by the filters is less than the noise
floor of an ideal 24 bit input (144.49 dB) for all frequencies.  This
is substantiated in the difference transfer functions, Figures 41 a, b
and c, which show that the system performance drops below an
ideal 24 bit input only at very low signal output levels.  This
excellent performance is a result of using 28 bit coefficients and 48
bit data word (24 data bits 8 head room bits, and 16 noise bits).

SUMMARY AND CONCLUSIONS

Digital filters are becoming ubiquitous in audio applications.  As a
result, good digital filter performance is important to audio system
design.  Digital filters differ from conventional analog filters by
their use of finite precision to represent signals and coefficients and
finite precision arithmetic to compute the filter response.  The
precision that is used determines the digital filter's response
accuracy and the filter signal to noise ratio.

The coefficient precision determines the accuracy of the digital
filter response in comparison to an ideal filter.   As was shown, a
second order Direct Form 1 filter using 24 bit coefficients can
achieve a 1 dB or better response accuracy in implementing a
modest parametric equalization filter with a 6 dB gain and a Q of 6
over the range of 50 Hz to 20,000 Hz at a 48kHz sample rate.
However, when the sample rate is increased to 96 or 192 kHz,
additional precision, 28 bits, is required to obtain similar
performance.  When less than this precision is used, the resulting
filter response deviates substantially from the desired response.

Similarly, the precision that is used in computing the filter response
plus the computation method determines the signal to noise
performance of the filter.  Noise arises in a digital filter as a result
of the quantization that occurs in computing the filter response.
The precision that is maintained throughout the computation
determines the noise amplitude.  As was shown, 16 noise bits are
sufficient to preserve the SNR performance of the input signal for a
parametric equalization filter with a gain of 12 dB and a Q of 6.7
from 100 to 20,000 Hz at sample rates of 48 and 96 kHz.  If fewer
noise bits are used, the SNR performance can degrade
substantially.  An example of this degradation is for the filter at 100
Hz, where 8 noise bits produce a loss of 40 dB in SNR at a 48 kHz
sample rate and a loss of 50 dB SNR at a 96 kHz sample rate.

Finite precision representation also imposes a limitation on the
maximum signal magnitude that can be represented. To permit
positive gains to be used in forming intermediate values within and
between cascaded stages, additional precision is required to avoid
numeric overflow. As was discussed, 8 bits of additional precision
provides sufficient headroom for a majority of cases.

In conclusion, the quality of 24 bit data at 48 and 96 kHz sample
rates can be preserved during digital filtering applications by using:
− 48 bits of data precision (24 bits of data, 8 headroom bits and

16 noise bits)
− 28 bit coefficients
− An IIR filter structure which is composed of cascaded

sections of second order Direct Form I filters that use
magnitude truncation.
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