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In Part I, the problems are described which the practicing engineer encounters who unwittingly
approaches the realization of IIR digital filters for the first time. It is assumed that suitable de-
sign programs are available to calculate the coefficients, and it is desired only to implement the
filter. Elegant solutions are provided for some of the most intimidating problems typically en-
countered, which are: 1) input scaling requirements, 2) truncation noise propagation and recircu-
lation, and 3)accurate low critical-frequency filtering. It is shown that the Direct Form I non-
canonic topology is the best for use in the digital filtering of audio, and while 16/32-bit DSP
chips such as the TMS$32010 or the ADSP-2100 can be used in many high-fidelity applications,
they will not meet the most demanding requirements. In Part II, we cover the DSP theory and
the VLSI circuit implementation of & one-stage muliirate 64:1 FIR decimator for use in one-bit

Sigma-Delta A/D applications

PARTI-IIR

THE IMPLEMENTATION OF RECURSIVE DIGITAL
FILTERS

I-0 INTRODUCTION

An expanded version of Paril of this paper, covering re-
cursive filters, was previously published in the Journal [39]
this past November. Although there is some new material
here delving further into Truncation Error Cancellation, we
will cover only the most important concepts, but we will
not discuss them in as much detail. Wherever possible the
same figure, equation, and reference numbers have been
used as were in the Journal.

Part II, which concemns itself with one-bit signal-width
FIR implementation for Sigma-Delta A/D applications, is
new material.

The design of digital filters and the implementation of
digital filters can be carried out as two separate tasks. The
design procedure involves the generation of the floating
point cocfficients, whereas the implementation involves
the choice of topology, coefficient and signal wordlength,
and handling of truncation (or rounding) effects. In this pa-
per we will deal only with the implementation (Consult [1]
for design aspecis.).

The word ‘digital’ as applicd to audio means discrete
both in time and amplitude. Digital filters, then, are inher-
ently nonlinear devices. A DSP (Digital Signal Processing)
engineer must recognize and resolve aberrations from lin-
ear behaviour.
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Cocfficient quantization, of itself, docs not induce non-
linear behaviour. The foremost aberration in digital filter-
ing is due to truncation noise. Truncation noise arises
whenever a numerical result or operand must be foreshort-
ened to meet the limited precision of some e¢lement input,
be it a multiplier input or a succeeding filter stage. Trunca-
tion introduces error, hence nonlinearities, by lowering
mathematical precision. Since the source of these errors is
usually known, we can write deterministic equations char-
acterizing them in both the time and the frequency do-
mains. Analysis in the frequency domain is essential to ob-
taining an intuitive grasp of the problem. The outcome of
the analysis should lead to a means of minimizing the im-
pact of truncation noise and perhaps some other associated
nonlinear effects.

Overflow is a phenomenon which occurs when numeri-
cal calculations within a fixed point filter exceed the
largest number physically representable; vice versa for un-
derflow. If overflow is to be prevented at all cost, then the
dynamic range of the digital filter will be overly con-
strained to be less than that of the input signal. This is be-
cause the input signal would need to be attenuated (scaled)
prior 1o its entry to the filter circuit. This scaling is undesir-
able because the attainable S/N at the filter output becomes
compromised. We will find a topology in Section I-1.1
which can deal with overflow using no scaling.

Filter designs having extreme critical frequency ("cen-
ter” or “cutoff” frequency near 0 or x) are difficult 1o im-
plement unless the coefficient wordlength is adequate
(about 24 bits), Currently, 24 bit processors are available,
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such as the MotorolaDSP56000 series, which alleviates
this problem. If higher precision is needed, “residual coef-
ficient coding” can be used

I-1 REVIEW OF TOPOLOGY

Figure 1 shows the Direct Form I second order digital
filter. It has only one accumulator, hence only one source
of truncation error. This error appears at the output of the
accumulator and sounds like colored noise. The error oc-
curs because the accumulator is capable of producing 32
bit results but the multiplier and succeeding stage can only
accept 16 bit inputs. Most DSP processors now have N-by-
Nbit multipliers which produce 2N-bit resalts which the
accumulators accept directly. So, the truncation error is re-
stricted to the feedback paths in the Direct Form I If we
could find a way to control the truncation noise recircula-
tion, this topology might be workable.

Let us establish the term “unity gain filter”, a filter
whose transfer function deviates in magnitude from unity
but is usually less than unity. Some examples of unity
gain design are shown in Figure6. There is an apparent
contradiction in the boost filter in Figure6, but we can
argue that the boost raises low level signals to unity level
or less at the filier output. If we were to design a unity
gain filter then we would expect the output level not 10
exceed unity, much of the time, therefore output over-
flow would not be a problem. If we could tolerate inter-
mediate overflows in the accumulator, which sometimes
occur during calculations prior to final output, then we
would have no need to scale the input signal. If both
truncation and intermediate overflow were controllable
using the Direct Forml, it would be a workable topology.

- 'We will later see that we can gain control over both these
phenomena using Error Spectrum Shaping (ESS) and
Jackson’s rule, respectively.

Figure 2 shows the Direct Form II (canonic) topology.
The same coefficient set produces the same filter transfer
as for the Direct Form I. Using the Direct Form II, we
would have two sources of truncation error to deal with;
one at the output of cach accumulator, permeating both the
feedforward and feedback paths this time. Note that the
state w(n) sees only the amplification of the input signal by
the system poles (the recursive part, by and by); w(n) can
become quite large as a result. There is an overflow prob-
lem here due to the five multiplier inputs that w(n) feeds;
these inputs cannot tolerate overflowed operands. So, we
are forced to limit the magnitude of w(n) which can only
be done by scaling the input signal, x(n).

Notice that when either the Direct Form I or II topolo-
gies are cascaded, they begin to look the same. High or-
der filters are most often designed by cascading second
order sections (or *stages”) because the Direct Form real-
ization of a high order filter would result in a geometric
growth in the problems we are dealing with. In audio, it is
customary 1o see Graphic and Parametric Equalizers con-
structed as arrangements of second order sections where
each section forms a complete filter. The lowpass bound
on the transition region of 6dB per octave per conjugate
pole pair does not exist in Moorer’s second-order designs
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{1]. For these reasons, this paper deals exclusively with
second order digital filters.

Figure 3 shows the transposes of the Direct Forms I and
1. How many truncation error sources are there? How does
each topology handle intermediate overflow in unity gain
designs? Figure 4 shows more second order topologies.
Does Direct FormII Transpose have the same overflow and
truncation properties as Direct Form I? (Yes.)

1.1 OVERFLOW AND JACKSON'S RULE
Leland B. Jackson (3] [5] has demonstrated an interest-
ing property of 2’s complement arithmetic; namely, it is a
modulo arithmetic. In terms of digital filters this means
that an accumulator may be allowed to experience interme-
diate overflow, without necessarily having physical head-
room bits, and still yield the correct result. This will work
if it is known ahead of time that the final accumulation re-
sult is bounded by the physical wordlength of the accumu-
lator; in DSP we call this unity gain design. Some exam-

ples of unity gain design are shown in Figure 6.
_ An example of Jackson’s rule is given in Figure 5. A

 corollary to Jackson’s rule allows overflowed operands as

input to the accumulator. It would be nice if there were a
similar rule for multipliers (this would be a good research
topic).

In summary, using Jackson's rule and the Direct Form 1
we can eliminate the need for input scaling, using the unity
gain design criterion, since we have infinite headroom in
the accumulator,

I-1.2 FLOATING VERSUS FIXED POINT

At this point, interested readers may query that a float-
ing point processor might obviate this overflow problem;
this is not necessarily true. As overflow begins to occur,
the floating point processor keeps track of the expanding
MSBs of a large intermediate accumulation. It does so at
the expense of the LSBs which get thrown out. In contrast,
an infinite headroom fixed point accumulator keeps track
of the LSBs throughout all intermediate overflows at the
expense of the expanding MSBs which, usually, all be-
come redundant at the final accumulation. The floating
point accumulator would thus introduce truncation error
into the LSBs whereas the fixed pointaccumulator would
not. .

One place where a floating point processor would be~
come handy is at interstage boundaries where, for high or-
der filters consisting of cascades of second order stages,
output overflow is likely to occur at any stage. Input scal-
ing is generally required for fixed point high order filters at
each stage because unity gain design can only be employed
for the whole filter. A floating point processor would clim-
inate the interstage scaling requirement, then, for high or-
der filters. Even so, we always want to use Jackson’s nle
and fixed point arithmetic in the accumulator within each

_individual stage so that we can take advantage of the infi-

nite headroom and LSB retention.

Floating point processors will neither solve the trunca-
tion noise problem. Truncation noise abatement summons
the greatest mantissa precision. In terms of truncation noise
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recirculation, the problem must be dealt with in exactly the
same manner regardless of whether a 24-bit fixed point
processor or a 24-bit with 8-bit-exponent floating point
processor is used.

I-2 TRUNCATION NOISE PROPAGATION

Figure 8 shows the truncation noise situation in a Direct
Forml filter. The only recirculation of error occurs in the
feedback paths. The truncation error signal, e(n), emanat-
ing from the truncator box, Q, is a signed quantity that rep-
resents the difference betweelr\l the full precision output,
y(n), and the truncated output, y (n);i.e.,

y(n) =y () + e(n) ©

In traditional implementations, e(n) is usually dis-
carded. In the frequency domain, the truncated output
appears like so:

¥ (2) = X(@)(E aiz-i) / (1 - £ bz)
-E@)/(Q-Zbzd) )

This equation (9) says that the truncation error, E(z), is
amplified by the system poles whether the filter boosts or
cuts! For many practical cases of high-fidelity audio filter-
ing, this is a severe problem. Equation (9) will serve as our
reference since this is the outcome if we do nothing about
the output truncation error,

I-2.1 TRUNCATION ERROR FEEDBACK

The network of Figure 11 shows one solution to the
problem of truncation error recirculation. As can be seen
from the figure, the truncation error, e(n), is being delayed
(saved) and then fed back into the circuit. The multiplier
coefficients, K1 and K2, operating on the truncation error
are trivial (having only one nonzero binary digit) and,
therefore, do not use the hardware multiplier. The effect
that this error feedback has on the truncated output can be
more easily seen in the frequency domain where,

Y(2) = X(@)(T aizd) / (1 - L bzi)

-E@)(1 - T Kz /(1- X bzd) (13a)

As can be seen from (13a), the coefficients, K;, only
operate on the truncation error and do not adversely af-
fect the transfer of X(z) in any way. Through a discern-
ing choice of the K;, we can place zeroes in the trunca-
tion noise transfer (in the “error function” [39]) right on
the unit circle to completely squelch audible truncation
noise in the immediate vicinity of those zeroes. A tabu-
lation of viable K; versus their normalized frequency re-
gion of impact is given in Table 1. In the table, "once/
twice” refers to the number of times an error feedback
zero is encountered in the evaluation of the truncation
noise transfer as the upper half of the unit circle is tra-
versed in the z-plane. In the case of second order error
feedback, the number is usually once; it can only be
twice when the conjugate zero is in close proximity. A
popular choice of zero location is at 8=0 (DC) because
then the impact in the audible frequency region is dou-
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bled. The same is true for 6= although not as popular a
choice.

TABLE 1
POSITIVE TOPOLOGY

K, K, REGION(6)
+2 -1 0 twice
-2 -1 T twice
+1 -1 /3 once
-1 -1 2n3 once
+1 0 0 once
-1 0 T once
0 +1 Oand once
0 -1 2 once

The region governed by the K; should be chosen to lay
closest to the region of amplification by the filter poles.
This Truncation Error Feedback technique is quite power-
ful and economical and has been used in the digital play-
back circuitry of commercial compact disc players.
THD+N measurements contrasting non-error feedback
circuitry will show tens of decibels disparity. Further ref-
erences to this technique can be found in [39] and the
topic is collectively referred to as Error Spectrum Shap-
ing (ESS).

2.2 TRUNCATION ERROR CANCELLATION

The audio engincer will observe an opportunity in equa-
tion (13a) to set the K; equal to the b; which has the effect
of squelching the truncation noise to zero across the entire
audio band. In this case, mostly all that remains of the trun-
cation noise in (13a) is the truncation error at the output it-
self, E(z) (3dB in magnitude at the 16 bit level), which
does not feed back into the circuit and so does not become
amplified.

Figure 11-II shows the complete truncation error situa-
tion. This Truncation Error Cancellation circuit is an out-
growth of ESS and very much resembles a double preci-
sion implementation. The K; are no longer trivial so the
hardware multiplier must be used. Notice that a new sec-
ond degree source of truncation error, e(n), has been in-
troduced as a result of the non-trivial error feedback multi-
pliers. This new error source arises because the error
feedback multiplications now produce 32 bit products. We
must truncate the 16 LSBs when we combine the MSBs of
the error accumulation with the least significant word of
the signal accumulation. Since this truncation of the trun-
cation-error-accumulation is ideally 32 bits below full
scale, we can expect this second degree error 1o reside at
approximately -186dB in level. We could justifiably ignore
e®(n) for many applications, but we can never ignore the
output truncation error, e(n), for serious digital filter work.

This sccond degree truncation error will only become a
problem if the amplification of it by the system poles raises
it above the signal noise floor (-90dB). Let’s see what is
happening in Figure 11-IL in the frequency domain. If we
define the truncation error accumulation, e(n), as we did
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for the filter outpui signal,

&(n) = £(n) + eA(n) (14a)
where,

le@(m)l << le(n)! (14b)

then the truncated output signal in Figure 11-11 has the fre-
. quency domain represeniation,

Y (@) = X@E az) / (1 - T bz’
-E(2)
“E®@) /(1 -Tbzl) (17a)

- where E(z) is the output truncation noise at the 16 bit level,
and E®(2) is the truncation-error-accumulation truncation
noise at the 32 bit level. If we were to use a 24 bit proces-
sor, we could expect [E@(z)! to be at least 234 dB below
unity (i.e., at the 40 bit level) before it experienced amplifi-
cation by the system poles. In this case, we could rightly
ignore it for most all applications. It is for this reason thata
24-bit processor in conjunction with Truncation Error Can-
cellation is recommended for high fidelity digital audio
work.

I-3 NONLINEAR PHENOMENA

I-3.1 OVERFLOW OSCILLATIONS

If we do nothing about overflow when it occurs at the
output of a digital filter (we are not talking about interme-
diate overflows), then the circuit will enter into a nonlinear
state. If and when it appears to fully recover, the digital fil-
ter may still be trapped in a weakly nonlinear mode; un-
wanted oscillations may be autonomously present. The
overflow oscillation problem is completely solved by satu-
rating the filter output upon detection of overflow there, as
in Figure 15.

The proper way to detect output overflow is by examina-
tion of the MSBs of the output accumulator at-and above
the first sign bit [39,Appendix2]. If the MSBs are different,
overflow has occurred (the output is not within the first
modulo) and the proper sign is probably that of the accu-
mulator MSB. The MSBs directly indicate the current
modulo. If there were physical headroom bits, the detec-
tion of overflow would be their intended purpose.

We never want the accumulator to autonomously satu-
rate because then we would not be taking advantage of
Jackson’s rule and infinite headroom. We discourage the
use of traditional overflow detection employing the carry
bit in the status register because it does not indicate when
we have returned to the first modulo.

1-3.2 LIMIT CYCLES

Limit cycles are omnipresent autonomous oscillations
caused by finite precision arithmetic in the signal feedback
paths. This phenomenon is a concern with any new imple-
mentation. The possibility of the presence of limit cycles
for a particular architecture can be predicted as a function
of coefficient value, although it is not the coefficients
themselves that activate the nonlinearity. Increasing the
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width of the feedback signal paths, physically or effective-
ly (via Error Spectrum Shaping techniques), diminishes the
amplitude of these oscillations. The results in [31] show
that Truncation Error Cancellation eliminates limit cycles
in second order digital filters; hence we solve both the
truncation noise recirculation problem and the limit cy-
cleproblem at once. ' ,

I-3.3 FILTER TRANSFER FUNCTION ANOMALIES

Another benefit of Truncation Error Cancellation or
Feedback is that the filter transfer function becomes
much less dependent on absolute signal level. Recall
from linear circuit theory that a time-invariant filter trans-
fer is theoretically independent of the input signal level.-
Using no error feedback however, transfer anomalies can
be observed at low (constant) input-signal levels in digi-
tal filters; indeed, a time-varying response can be ob-
served under the proper conditions for a fixed frequency
input sinusoid. This nonlinear phenomenon is a direct
consequence of the digitization of the audio signal in the
filter. '

1-3.4 FORCED OVERFLOW OSCILLATIONS

Once the digital filter output saturates (clips), under pro-
gram control, its behaviour again becomes nonlinear. Fig-
ure15 shows only the feedback portion of a second order
digital filter having a saturator at its output; the truncators
and the feedforward paths are not essential to this discus-
sion. Figure16 shows a typical time domain response of
this second order digital filter overdriven by a sinusoid.
The input is present for this type of response which ex-
plains the term 'forced’.

Unfortunately, the use of ESS does not solve this prob-
lem; neither does it exacerbate the oscillations. To return to
normal behaviour, the input signal level needs to be re-
duced to well below that which elicited the response, in
some cases. Figure 17 shows the stability triangle having
the coefTicient region shaded for which overflow oscilla-
tions are a potential problem. Although there appear nulls
in the problem region, at this time it seems that the only vi-
able solution is to reduce the input signal level. Further re-
search is required in this area.
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ERRATA

We would like to note further discussion of the original
paper, published in the 1988 November Journal, which ap-
pears in a subsequent Journal Letters, dealing with the top-
ic of second degree truncation error using Truncation Error
Cancellation. There were also some errors which appeared
in the original paper.

1) Table 1, pg.863.

Fourth entry: should read ‘r/3 Once’
(not “Twice').
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Fifth entry: should read ‘2 n/3 Once’
(not ‘Twice").
A new (eighth) entry: K, = 0, K3 = -1,
Region 8=7/2 Once.
2) Section 2.5.1, prgh.2, line 15, pg.864.
Little ¥ should be squared.
3) pg-870.
First equation at top left of page: should read
ci + binary code(ec;)/(29°29%) = ¢
An asterisk should appear in the caption for
Fig.14
preceding ‘See TMS ...’
4) Section 4.1.2, prgh.1, pg.872.
Delete lines 21 through 24; i.e. delete,
‘worsens when... ...problem’
5) pe.874.
The approximation to h(n) equation should
take the absolute value on the left hand side.
6) Section 1.2.2, last paragraph, line 11, pg.858;
should read: ‘gain and less. The responsibility..."

PART li-FIR

THE IMPLEMENTATION OF A ONE-STAGE MULTI-
RATE 64:1 FIR

DECIMATOR FOR USE IN ONE-BIT SIGMA-DELTA
A/D APPLICATIONS

JON DATTORRO, ALBERT CHARPENTIER, &
DAVID ANDREAS

ENSONIQ Corporation

1-0 INTRODUCTION

Sigma-Delta modulation is emerging as a preferred alter-

native to successive approximation techniques for analog
to digital conversion [42)-[53]. The Sigma-Delta system
can, conceptually, be divided into two distinct parts: the
analog front end (the one-bit modulator), and the digital
decimation filter. The decimation filter outputs the desired
digital signal. This paper concemns itself with the imple-
mentation of the decimation filler only, when presented
with a one-bit stream from the front end flash converter (a
lone comparator). The advantages of the binary state signal
are capilalized on in this design.

The attraction to Sigma-Delta A/D converters in terms of
hardware, is the relaxed constraints on the input anti-alias
filter and the lack of the need for a sample/hold circuit.
The foremost theoretical reason for the preference of Sig-
ma-Delta is the fact that [51] as the signal level goes down,
the harmonic distortion increases at a much slower rate.
This is primarily due to the superb linearity of the analog
front end. In the one-bit case, the linearity easily exceeds
that of the best successive approximation designs.
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The Sigma-Delta process, in simple terms, spreads the
quantization noise of a very low resolution flash A/D con-
verter over a broad region covering several MegaHertz,
and then shapes that noise via feedback of filtered quan-
tized signal. The output of the low resolution A/D convert-
er is presented to the decimation filter whose task itis to
take the low resolution high speed samples and convert
them to high resolution low speed samples.

II-1 THEORY

1#-1.0 DECIMATION

Our one-bit A/D converter is running at 3.072 MHz. The
desired sample rate is 48kHz.We then have a decimation
ratio of 64. If we use an FIR filter to perform the decima-
tion, then the current decimator output is not dependent on
previous outputs because of the nonrecursive structure.
There is, therefore, no filter output truncation noise recir-
culation to worry about. In the time domain we are allowed
to literally throw away 63 out of every 64 output samples
calculated. In fact, it is not even necessary to calculate
those 63 intermediate samples. If we use only one FIR fil-
ter to perform the decimation from the 3.072MHz rate to
the 48kHz rate, then we say that we are decimating in one
stage.

Other commercial implementations [44] [47] [50] [S1]
of the decimator comprise several small moving average
type FIR stages in cascade, operating at a 'much higher
rate. This is a good approach but the attraction to the one-
stage approach is the small area of silicon upon which a
large ROM can be constructed (ROM is cheap), and the

" high alias rejection at the first foldover frequency (-110dB

at 28kHz for a 48kHz sample rate). We have found that
2048 22-bit coefficients are required at 3 MHz to reach the
theoretical performance level of a 16 bit A/D converter,
which agrees with Adams’[47) assessment of about 4000
coefficients at 6MHz.

Figure 18 shows the process of decimation in the fre-
quency domain. In Figure 18(a) a fictitious baseband au-
dio spectrum is shown out to 3.072MHz with its first
replication. The prime on the frequency argument de-
notes the high sample rate. Figure18(b) shows the FIR
transfer. The original spectrum is multiplied by the FIR
transfer at the high sample rate (not shown) correspond-
ing to the convolution in the time domain. Note that
while the stopband attenuation of the FIR is high, it is
not absolute zero. We can infer that the quality of the
decimation is somehow related to the absolute spectral
level of that out-of-band (the 24kHz -> 3MHz region)
material and the degree to which it becomes atienuated.
This is true, since when we throw away 63 out of 64
samples, the spectrum in Figure 18(c) resuliswhich
shows aliasing as a result of the decimation. The aliases
are shifted replications of the filtered 3.072MHz spec-
trum. We need to know the total accumulation of un-
wanted alias distortion. First note some incidentals con-
cerning the aliases: 1) there are only 63 aliases into the
audio baseband [40], 2) the baseband spectrum remains
symmetrical after decimation.
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i1-1.1 DECIMATOR ALIAS NOISE

To determine the amount of alias distortion, we need to
know whether the out of band signal is correlated or un-
correlated to the base band audio signal. If the out of

band signal were correlated with the audio signal, the

amount of aliasing noise in power spectral level could be
as bad as 10log(632S,) [22,chap.3-4], or 36dB over S,
where S, is the power spectral density of the FIR filtered
out-of-band signal prior to decimation. Refer to Fig-
ure19. It becomes the job of the Sigma-Delta analog
front end to make sure that the out of band signal is un-
correlated. In this case the amount of aliasing noise is
approximately 101og(63S,), or 18dB over S,. This alias
noise, 63S,, is combined as the sum of the squares with
the in-band pre-decimation noise power spectral density,
Sq to get the total post-decimation noise power spectral
density in-band,

S, = 5,+635.. (11-1)

To reach the noise performance of a 16 bit converter, we
need at least 90dB S/N in the 24kHz baseband. The noise
power, N, refers to the integral of the total noise power
spectral density, S,. In the time domain, this means that the
RMS level of the noise is such that only the LSBwould
ever be toggled in response 1o the noise alone. In the fre-
quency domain it means that the power spectral density,
S,. should have a level of about -140dB [22,chap.6-2] with
respect to a unity level sinusoid. Refer to Figure 20. The
total noise power can be estimated in the frequency domain
over a 24kHz bandwidth as follows:

24 kHz
10log(N) = 10log( jo 0Sy kdf) = -96dB 11-2)

when S, = 10140710 [V2/Hz]

We can now determine the required FIR attenuation. Re-
ferring to Figure 19, using (II-1) and realizing that

S, = 10M+Hp)10 [v2/Hz]
then,

‘I Hp=10log(S,-Sy)-18-M[dB] 1-3)

;for §4 < Sy

where M is the level of the out-of-band pre-decimation
modulator noise power spectral density in dB (about -
34dB, [44], Figure 21), and Hg is the (negative) FIR stop-
band attenuation level in dB. When the noise contribution
due to aliasing is only 18dB, and 10log(S,) is about -
144dB, then we find from (1I-3) that the required FIR stop-
band level, Hg, is about -126dB.

Figure 21 shows a simulated modulator output signal
and noise floor in.response to an input sinusoid. The simu-
lation was performed in floating point arithmetic. The out-
of-band noise power spectral density, M, is lower than our
conservative estimate of -34dB, above. The bandwidth of
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this plot is 1.536MHz and so the signal, at exactly
1.500kHz, is scrunched up against the left hand side. Fig-
ure2? shows the audio band only, of the same modulator
output. The in-band noise power spectral density, Sq, is a
little higher than we would like but this is compensated in
equation (I1-3) by the lower out-of-band noise, M. Figure
23(a) shows the audio band of the simulated decimator
output, post-decimation, in response to the modulator out-
put of Figure 21. This part of the simulation was per-
formed using all integer arithmetic. Figure 23(a) repre-
sents a 21 bit decimator output. Figure23(b) represents a
16 bit decimator output. The character (or correlation) of
the noise floor after truncation to 16 bits depends totally
on the modulator design which can be considered to be a
pre-dithered noise shaping system. Harmonic distortion is
more likely here because the 1-bit sinusoid frequency is a
sub-multiple of 48kHz.

Figures 21, 22, and 23 are estimates of power spectral
density [4,chap.11]. The size of the FFT required for ade-
quate spectral resolution was 65536 points. Although our
plots of (power) spectral density use decibels on the ordi-
nate, they should not be confused with “noise power”
which is the integral of spectral density.

11-1.2 DECIMATOR FILTER SHAPE

To get 126dB of attenuation requires at least 21 bits (as-
suming 6dB per bit) of resolution in the FIR coefficients.
We can understand this intuitively by realizing that the FIR
filter coefficients are quantized samples of the impulse re-
sponse of the desired filter. If the quantization RMS noise
floor of the coefficients exceeds the desired stopband level,
then it is not likely that the filter will meet specifications.
For example, in order that a one-bit signal be attenuated
downward 21 bits, the mathematics at the 21 bit level must
be accurate. Obviously, the greater the precision in the cal-
culations, the more this will be true. The noise floor at 21
bits, then, is the lower bound, while some number of bits in
excess of 21 becomes the upper bound on the number-of-
bit criterion for accurate high attenuation filtering.

Another way to look at this is in analogy to IR filters.
Recall that the coefficient resolution of an IIR filter pri-
marily determines deviation from the shape of the de-
sired filter; the same is true for FIR. This can be seen
easily by taking the Fourier transform of the digital im-
pulse response.

In reality, the 21 bit impulse response does not utilize
the whole quantization space and we can lose as much as
about 4.4 dB from the theoretical limit. For this reason
we will use 22 bit coefficients to guarantee 126dB atten-
uation. The 2048 quantized coefficients which comprise
the FIR decimator are shown in Figure 24. The coeffi-
cients were calculated on a ' VAX8700 at ENSONIQ us-
ing a standard Parks/McClellan algorithm in quadruple
precision, and about 1 hour of CPU time. The FIR trans-
fer function is shown in Figure25; it was calculated us-
ing an FFT on the 22 bit coefficients. Note that the nor-
malized passband width is only 0.0064 which yields a
-3dB point at 22kHz, and the attenuation is 110dB at
28kHz. The transition region is therefore about 392dB
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per octave. A blowup of the passband is shown in Fig-
ure26; the ripple is negligible.

1.3 FIR COEFFICIENT GAIN AND OFFSET

The floating point coefficients out of the Parks/Mc-
Clellan algorithm are all much less than 1.0 in magni-
tude; interestingly enough, the algorithm produces a uni-
ty gain design which means that the gain is unity in the
passband. This means that we can introduce a gain into
the passband if we desire to compensate some sysiem
loss and/or to eliminate leading binary zeroes from the
coefficients to increase their precision. If the minimum
floating point value produced by the Parks/McClellan al-
gorithm is called min (-0.00312), and the maximum val-
ue is called max (0.0148), then the maximum gain, g,
that we could ever introduce while still maintaining 22
bit precision is

g < 1/(max-min) (= 55.7) (11-4a)

In our implementation we work with unsigned coeffi-
cients to simplify the hardware. In this case we need to add
an offset,

d = -min (11-4b)
to the floating point coefficients prior to introducing the
gain factor so as to make all the floating point coefficients
positive and to maximize the utilized quantization space.

The normalized impulse response is then,
hrorm(n)= (h(n)+d } g (II-4c)
where h(n) are the floating point coefficients produced by
the design procedure, d is the floating point offset, and g is
the floating point gain factor. The floating point coeffi-
cients, hypm(n), are all non-negative as a result of the off-
set. They will later be encoded and then stored in ROM us-
ing 22 bits of precision but having no sign bit.
The desired (standard) floating point convolation is,

Yaes(n) = L h(k)x(n-k) (II-5)

The calculation we will actually perform on chip is,

ly(n) = Z[hnom(k)xnmm(n—kHCo[l-xnogz(n-k)]] (I1-6)

where, Xpom(n-k) = 1 or 0 = x(n) + 0.5
x(n)=-0.50r0.5

Since the quantized signal, x;orm(n), has only two
states, we can force no symmetry about zero. It has, there-
fore, a DC offset of 0.5 -which should be subtracted out of
the accumulation. This is the purpose ofg/2 which is sub-
tracted after the completion of the accumulation. The sec-
ond term in equation (II-6) involving Co will neutralize
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the term, dg, in the normalized coefficients in (II-4<). Cg
is the floating point representation of a positive constant
whose value is chosen such that N (=2048) times Cp ex-
ceeds the available accumulator dynamic range;i.e., in
floating point,

NCop=(NI/222)>¢g 11-7)

:for I a trivial binary integer (a binary integer having
only one nonzero digit). The purpose of Cg will be to triv-
ially overflow the accumulator into another modulo; but al-
ways into the same place within the same modulo.

Expanding equation (II-6) we find,

y(n) = T{{gh(n) + dgl{x(n-k) + 0.5] + Cpl1 - (x(n-k) +
0.5)1)
8P

(0-8a)

=0.5g T {h(n)) -2

+ X (gh(n)x(n-k) + 0.5dg + 0.5Cg + [dg - Colx(n-k)} (I1I-
8b)

The first two terms vanish because the Parks/McClellan
filter design is unity gain (the cocfficient quantization pro-
duces a tiny DC offsct). We can only rid the last term if

Co=dg (11-8¢)

At this point we need to adjust d and g so that their prod-
uct equals Cq exactly, for Cg constrained as in (II-7).I1f we
do this, then (II-8b) becomes,

y(m) =g Z{ h{mx(n-k) } + NC (11-9)

Note that the multiplication of two trivial binary integers
results in another trivial binary integer. Since NCq has
been chosen to overflow the accumulator such that if the
Xporm(n-k) were all zero then the accumulator would be
zero, then, in effect, NCp goes away and we are left with
the desired convolution times a gain factor.

I1.4 FIR ACCUMULATOR WIDTH

The accumulator size is not arbitrary; it must be cho-
sen such that we know which bits out of the accumulator
will be used as the output bits. Since the normalized fil-
ter uses unsigned Q22 coefficients having widths of 22
bits, and the QO signal is one-bit, then at least a 22-bit
accumulator is required, following the rule: Q22XQ0=
Q22, 22-bit8,1-bit= 23-1 redundant (in this case, super-
fluous) sign bit = 22 bits.

If the gain, g, in (II-4c) were equal to 1, then a 22 bit ac-
cumulator would be sufficient because the filter design is
unity gain. But, since the maximum allowable value of g,
which will not demand greater than 22-bit coefficient pre-
cision, is 55.7 for our particular filter design (I[4a), we
choose g to be 25 (=32). This particular value of filter gain,
g, serves to eliminate 5 leading binary zeroes from the co-
efficients, h(n), and establishes the number of extra bits re-
quired in the accumulator to be exactly 5, which brings us
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up to 27 bits. If there were a system loss to compensate, we
could use a g of greater value (but less than 55.7), having
no need to adjust the accumulator width.

Finally, we want one more (guard) bit in the accumulator
which we will use for overflow detection. (The proper way
1o detect overflow is discussed in [39,Appendix 2] and in
section I-3.1 here.) This brings us to the requirement of a
28 bit accumulator. The accumulator output comprises the
MSBs excepting the guard bit.

1I-1.4.1 BOOKKEEPING

Even though all the normalized coefficients were non-
negative, equation (II-9) indicates that the result, y(n), is
a signed quantity because both h(n) and x(n) arc signed.
After we account for the gain, g, the effective binary
point in the accumulator lays between the guard bit and
the 27th bit (calling the LSB the first bit). Since x(n) is
bounded in magnitude by 0.5, and since the filter design
was unity gain, then y(n) must obey the same bound. This
is the purpose of the -g/2 term in equations (11-6) and
(11-8). Specifically,

0.5 <y(n)/g<0.5

We can now move the binary point one place right, ef-
fectively multiplying by two, recovering the sign bit. The
28 bit accumulator ends up in Q26 format.

1-1.5 SPECIFIC VALUES OF FIR COEFFICIENT
GAIN AND OFFSET ,

The present section is tedious and can be skipped with-
out any loss of comprehension. It is included for the engi-
neer who wishes to pursue this design philosophy.

Equation (II-4a) expresses the maximum value of the fil-
ter gain, g, which occurs for a coefficient offset, d = -min.
In general, to insure normalized coefficients bounded by 1,

g < 1/(max + d) (II-10)

Using this equation, (I-8c), and tightening the bound in
(I1-7) to account for the extra accumulator (guard) bit, we
can derive the following bounds on Cp:

2W22N < Cy < 1 - g(max)
(II-11a)

(=0.526)

where W is the accumulator width, 22 is the desired coefTi-
cient resolution, and N is the number of coefficients.

For this particular implementation having a gain chosen
to be 32, and our filter impulse response which, non-nor-
malized, has a max of about 0.0148 and a min of about -
0.00312, the only possible values of Cg are (in floating
point):

Co=dg=2//222N; fori= W, W+1, W42, W+3, W+4
= 0.03125,0.0625, 0.125, 0.25, 0.5

Actually, Cy can be the sum of any subset of these val-
ues and still cause the accumulator (o overflow trivially, as
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long as (II-11a) is satisfied. But there is another constraint
on our choice of Cg which raises the lower bound on the
subset sum. Whereas (II-10) insures normalized coeffi-
cients, the inequality (II-4b) insures that the coefficients
are all positive. From (1I-4b) we can derive,

(0.0998 =)

(-min)g < Co @-11b)
We will setCq as close as possible to -min/(max-min)

(~0.174) to maximize the conceivable range of g in (II-11);

Co = 0.0625 +0.125 = 24 + 23 =0.1875

In general, choosing g any higher than 25 would require
another accumulator bit. If there were a system loss to
compensate however, g can be chosen to exceed 23, and
then Cy can be set according to (11-11) without the need
for an extra accumulator bit. g is not constrained to be an
integer. As long as (1I-11) is complied, the coefficient off-
set, d, will effectively adjust itself, however g is adjusted,
to satisfy (II-8c).

In summary the Parks/McClellan floating point coeffi-
cients would be encoded in (unsigned) binary for storage in
ROM using the following equation:

binary code(fperm() = 222{ gh(n) + Cp }

As a final note, to simplify the hardware, the term g/2 in
equation (II-6) could be integrated into Cp and the coeffi-
cients, hporm(k). which would eliminate the final sub-
tracter circuit. This affects the preceding math which can
be re-figured using d’=d-1/2N in place of d, and Co'= Co-
g/2N=d’g in place of Cg. Cg would still have the lower
bound in (II-11a).

I-2 HARDWARE

11-2.0 BRUTE FORCE IMPLEMENTATION

The speed requirements of a brute force implementa-
tion would be excessive for low power CMOS. Since the
input signal is one bit in width, we are performing only
conditional additions; no multiplications. At a 48kHz out-
put rate, the accumulation time would be 20.83uS /
2048coefficients~ 10nS. This is about an order of magni-
tude too fast. The decimation rate is 64. This means that
every 64-3.072MHz clocks, we must output a new sam-
ple. If we use the 3MHz system clock as the accumulator
clock, then we could only calculate one 64-tap FIR at the
48kHz rate.

To solve this problem, we will use 32 parallel process-
es all operating at the system rate of 3MHz [41]154].
Each parallel process, operating using a time skew of 64
clocks with respect to its neighbor, will only be required
to output a sample every 2048 system clocks. Not more
than one parallel process will yield an output at any giv-
en time. In this manner, a sample will be ouiput every
64-3MHz clocks from a successive parallel process. Al-
though the output rate will be 48kHz, each one of the
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parallel processes will be operating at an subsampled
output rate of only 1.500kHz.

Formally, the structure we have described is called a
"multirate filter” [40] because the final output rate is not
the same as any one parallel process’ output rate. The
structure is shown in Figure 27. We will omit the Cg offset
compensation for clarity. The parallel processes are them-
selves FIR filters working at a 1.5kHz rate. It is interesting
that the output of each of these slow FIRs can be combined
to form the desired output, ya,(n), with no aliasing due to
1.5kHz replications. The time skew adds a phase factor to
the transfer of each of the muliirate FIRs so that their sum
produces the desired result. It is also interesting to note that
the impulse response of the decimator at the 48kHz rate is
time-variant; there are 64 different impulse responses.

112.0.1 CONCEPT - CONVOLUTION

The classical process of FIR filtering is formally de-
scribed as a convolution, The coefficients of the FIR filter
are simply the sampled impulse response of that filter.
Graphically, convolution means that the (symmetrical) FIR
impulse response is time reversed, and then the input sig-
nal is shifted one system clock at a time undemeath it. At
every clock, the sum of the products of each sample and
the value of the impulse response directly above is comput-
ed. Each sum constitutes an output sample. The process of
decimation allows us to throw away 63 out of every 64
samples calculated. If we examine all of the multirate FIRs
at any one instant in time, we find that they are each work-
ing with a coefficient set which is displaced 64 coefficients
from either neighbor.

11-2.1 COMMUTATION

Each of the 32 FIRs in Figure 27 has its own ROM,
complete with a redundant copy of the coefficients. Since
the signal is only one bit in width, it gates the coefficient
from the ROM into its associated accumulator. The accu-
mulators are all attached to a commutator. The commuta-
tor ‘spins’ so that it selects another accumulator output at
a 48kHz rate. When it reaches the last accumulator, it
goes back to the first. The counter operates at the 3SMHz
rate and its 11 bit output is used as the address to all the
ROMs. The accumalators all work at the 3MHz rate.

ROM #1 is organized having coefTicient #1 at location
0. Starting from absolute time 0 with the first 1-bit signal
sample, accumulator #1 (of FIR #1) will begin its compu-
tations starting with coefficient #1 which resides at loca-
tion 0 in ROM. 2048 signal samples later, it will be read
by the commutator and then zeroed only to begin its com-
putations again starting with the 2nd set of 2048 signal
samples.

Starting from absolute time 0, after 64 1-bit signal sam-
ples have arrived, we will expect accumulator #2 to begin
its computations using the cocfficient #1; but the address
from the counter is pointing to location 64. Therefore, lo-
cation 64 in ROM #2 must have coefficient #1 there. After
2048 more signal samples arrive, FIR #2’s accumulator
will be read and then zeroed, and the whole process will
repeat.
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In this fashion all 32 multirate FIRs operate in time
skew. The coefTicient ordering is shown in Figure27. The
stored coefficients become rotated in steps of 64 from
ROM to ROM.

11-2.1.1 CONCEPT - MULTIRATE PROCESS

This section is theoretical and can be skipped without
loss of continuity.

The commutator in Figure 27 is the processing element
that makes the decimator multirate. A simple time domain
proof that the commutator can be used without unwanted
aliasing is as follows: Assume that yge(n) is the desired
48kHz rate (decimated by 64) signal which is known to be

good. Then

31
Yous(n) =Xyp(@) :n<>48kHz
p=0 1q<> 1.5 kHz (II-12)

where yp(q) is the 1.5kHz rate signal (Ya,(n) further sub-
sampled by 32) from each parallel process;i.e.,

¥p@ = Yau(324 - ) (I1-13)
Then there will be no unwanted aliasing only if,
n=32q-p (I-14)

For an alternate proof in the frequency domain, see
[40,Sec.4.2.1]. Essentially, the proof there can be boiled
down to first time-shifting the desired sequence,

(II-15)

ZPY 4oe(2)
and then subsampling (decimating further) by 32,

31
Yy(2)=(1/32) T e-Kw ko0 Y gy (50m-20853D)
k=0
Then prove that:
31
Yau(D=E Y ()
p=0

1-2.2 MULTIPLEXING

Figure 28 is more efficient in terms of ROM since there
is no longer a duplication of it. The ROM is now segment-
ed having 32 outputs from 32 segmenis. Each segment
holds 64 unique coefficients. The 6 LSBs from the 3MHz
counter address all the ROM segments at once. Each seg-
ment runs through each of its 64 coefficients at the 3MHz
rate and sends them to its respective output. The coeffi-
cient segment assignment is shown. The multiplexers now
route any one of their 32 22-bit inputs to their respective
output. The routing is controlled by the SMSBs out of the
counter at the 48kHz rate. The operation below the muiti-
plexers is the same as before. The purpose of the multi-
plexers is to perform the coefficient rotation. Looking at
multiplexer #1, we see that the segments are ordered into it

(11-16)

{11-17)
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(left to right) starting with segment #1. Multiplexer #2 or-
ders the segments such that segment #32 is in the first (left-
most) input while segment #1 is the second input. This
agrees with the reasoning we used to order the coefficients
in Figure 27.

-2.3 VLSI

The actual physical organization is shown in Figure 29,
There, all the multiplexers have been replaced by one bar-
rel shifter. The muliplexer input wiring in Figure 28 was
quite hairy. The barrel shifter in Figure 29 takes any one of
its 32 inputs and routes it to any one of its 32 outputs. The
wiring extemal to the barrel shifter is greatly simplified.
Internally, the barrel shifter embodies a type of matrix or-
ganization. The ROM is still segmented as before, con-
trolled by the 6 LSBs out of the counter at the 3MHz rate.
The accumulators are now aligned vertically one above the
other to form a more compact silicon structure.

The actual VLSI realization uses a bit-wise organization
such that bit 0, for example, for all the coefficients in the
ROM, all the barrel shifter inputs, and for all the accomu-
lators, are aligned in one column. This allows easy decom-
position for coefficients of varying widths,

The advantages of this design include an easy stereo im-
plementation; all that must be done is to double the number
of accumulators. The ROM and barrel shifter are shared
for any number of channels. The present implementation
has 64 accumulators for stereo operation. Every 4 accumu-
lators comprise one multiplexed accumulator. We estimate
the dimensions at about 140 X 180 mils.
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Fig. 4. Some second order topologies.

Jackson's Rule:

Any numper of additions and/or subtractions may cccur.
Intermediate results and operands may fall inte any modulo.
As lang as the final result is made to fall
into the first modulo by design,
it will be representable in two's complement
at the chosen wordlength, and a valid result.

EXAMPLE:
DESIRED | MODULD
RESULT | RESILT
32512] 32512
+ 256] + 258
32768 | -32768 (2nd Hadulo)
- 7581 - 768
32000 32000 {1st Mooula)

0

Fig. 5. Two’s complement is a modulo arithmetic. The first
modulo (ring) for 16 bits is shown. The arrows help visuafize
Fig. 3. a) OK for audio use, Direct Form Il Transpose. b) Not the traversal from the first into the second modulo, and then
for audio use. Direct Form | Transpose. back again.
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Fig. 11. Second order error feedback.

Fig. 11-Il. Second order truncation error cancallation showing
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The Implementation of Recursive Digital Filters
for High-Fidelity Audio®

JON DATTORRO

ENSONIQ Corporation, Malvern, PA 19355, USA

The problems are described which the practicing engineer encounters who unwittingly
approaches the realization of IIR digital filters for the first time. It is assumed that
suitable design programs are available to calculate the coefficients, and it is desired
only to implement the filter. Elegant solutions are provided for some of the most
intimidating problems typically encountered, which are 1) input scaling requirements,
2) truncation noise propagation and recirculation, and 3) accurate low critical frequency
filtering. It is shown that the direct form I noncanonic topology is the best for use in
digital filtering, and while 16/32-bit DSP chips such as the TMS32010 or the ADSP-
2100 can be used in many applications of high-fidelity digital audio, they will nof meet

the most demanding requirements.

0 INTRODUCTION

0.1 Ground Rules

Let us assume at the outset that the theoretical design
of digital filters in the z domain is a routine task. There
are many books and papers written on this topic. Moorer
[1] provides unity-gain, minimum-phase designs and
is a superb reference for digital audio work. The low-
pass bound on the transition region of 6 dB per octave
per conjugate pole pair does not exist in Moorer’s sec-
ond-order parametric filter designs. We have tested and
verified the C programs that he provides. As such, this
paper will not deal with the derivation of floating-point
filter coefficients. Rather, it is assumed that they are
known and the only remaining task is to design the
software (or hardware) that will implement the filters.
It should be emphasized that the design of digital filters
and the implementation of digital filters can be carried
out as two distinct tasks. Most design procedures pro-
duce the coefficients for the dircct form filter topologies.
The coefficients for other topologies can usually be
derived from these via suitable transformations. More
specifically, a typical design program would produce
one set of coefficients which are directly applicable to
either of the two standard second-order sections (the
direct forms, Figs. 1 and 2, or their transposes, Fig.

* Manuscript received 1988 July 18; revised September
7, 1988.

J. Audio Eng. Soc., Vol. 36, No. 11, 1888 November

3) which are described in the frequency domain by the
transfer

agg + (lpll_l + aF22°2

1 - bplz—‘ - bpgzkz

H(z) = (1)

For brevity in the text, we will often write equations
like Eq. (1) as

(2

where the subscripts F indicate that these coefficients
are the floating-point values provided by some design
procedure. Qur implementations will generally operate
with fixed-point coefficient values, and so this becomes
one of the issues that bear discussion.

We will always prefer minimum-phase designs (all
zeros within the unit circle) because 1) the total phase
excursion is always less than 360° for a second-order
section; long phase (“propagation” or “transport”) delays
are unacceptable; 2) all coefficients are bounded as in
Pascal’s triangle if the filter design is unity gain. We
prefer unity-gain designs because it will be less apparent
when they are kicked in.

We will purposely show our filter circuit topologies
as having positive-signed coefficients at the multipliers
(see Fig. 1) because this leads to positive accumulations
in the resulting software. We call this a positive to-
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pology. This topology is sometimes more convenient
for the programmer; hence the negative denominator
coefficients in Eq. (1). The implementer must be aware
of the convention concerning the signs of the coefficients
produced by some design procedure. If the filter blows
up at the start, this is the first place to look.

This work was conceived within the dimensions of
the digital signal processing (DSP) architecture of the
entire TMS320 series, but the concepts and problem
solutions are universal and can be readily applied on
other DSP processors. The primary feature of the
TMS320 architecture (besides being nearly a full fea-
tured microprocessor) is a fast-signed 16- by 16-bit
multiplier having a 32-bit product which can be ac-
cumulated to 32 bits. We call this a 16/32-bit archi-
tecture. So our work will be applicable to any archi-
tecture having N-bit by N-bit multiplications with
nominally 2N-bit products and 2N-bit (the same word-
length) accumulations. This is typical of the current
wave of DSP chips. The TMS32010 and 20 are peculiar
in that there is no provision for an unsigned multiply.
This at first seems to impair double-precision coefficient
performance, but a very simple method to get around
this limitation will be discussed.

TMS32010 code is provided in Appendix 1, which
comes from a commercial parametric filtering appli-
cation. It is provided mainly as proof of principle to
the concepts presented herein.

0.2 Audlo

In order for a digital filter to be usable for high-
quality audio, it must not degrade system performance
such that the system specifications are violated. This
means that the effects of the filter must be transparent
to the user except for the concomitant changes in fre-
quency and phase response. Therefore such things as
the signal-to-noise ratio (SNR), the dynamic range, or
the total harmonic distortion plus noise (THD + N) of
the entire system should not be degraded. The digital
filter itself, then, must have specifications that surpass
those of the host system.

We would like there to be some advantage to the use
of a digital filter in comparison to the corresponding
analog filter, so we mention onc advantage which is
not often cited: in analog filter implementations, tran-

x {n}
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sient intermodulation distortion (TIMD) may be a
problem. In corresponding digital filter implementations
there is no physical analogy to the cause of TIMD
(slew-rate limiting) [2], thus there can be no TIMD
induced.

In audio work it is customary to find designs centered
in the very low-frequency region. To a recording en-
gineer there is a vast difference between a filter whose
critical frequency is placed at 50 Hz and another placed
at 60 Hz. Single-precision (16-bit) coefficient reali-
zations are not satisfactory for thé required control
over low critical frequency. It is generally accepted
now that 24-bit coefficients are adequate for high-quality
digital audio work.

0.3 Truncation Noise

The first widely used digital filters conceived in
hardware in the 1960s were intended for telecommu-
nications applications such as the telephone touch-tone
decoder. Leland B. Jackson, who is often called the
“father of digital filters” for his pioneering work in the
analyses of associated nonlinear phenomena, was em-
ployed by Bell Telephone Laboratories when he and
James F. Kaiser presented a hardware scheme [3] for
the implementation of such a decoder. The outstanding
topological idiosyncrasy of their circuit implementa-
tions, from our present vantage point, was that all the
signal paths, including the multiplier paths, were con-
strained to have the same wordlength. Therefore their
first analyses of roundoff noise warranted by the trun-
cation process were based on a constraint that need no
longer exist. DSP chips suitable for audio routinely
supply double-wordlength products and accumulations.
We must still be concerned, however, with the truncation
at the output and its effect upon the digital circuit when
fed back.

In concept, if a digital filter accepts as input an integer,
then an integer plus a fraction (a fixed-point number
having a nonzero fractional part) is, in general, produced
at the output. If the output were rounded off to the
nearest integer and we consider only the effects of errors
that occur at the output, then the output would be in
error by at most ¥2 LSB (3 dB) in magnitude. This
rounding (or truncation) process at the filter output is
unlike the process that describes the quantization errors

Fig. 1. Direct form I; for audio use.
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inherent in analog-to-digital (A/D) conversion. Still,
it is most often modeled in the literature {4, p. 413] as
arandom process that produces an additive white noise
source at the output node. In any case, the input signals
to cascaded second-order digital filters have, in addition
to the signal itself, a noise source from the preceding
stage which gets filtered along with the signal. We will
be concerned with just how these noise sources combine
through a cascade.

0.4 Filter Circuit Topology
0.4.1 Second Order

Since all of the required hardware to implement digital
filters in real time has now been integrated onto a single
programmable chip, there is a tendency to think of a
digital filter as an amorphous software implementation
as opposed to a hard circuital implementation. (Indeed,
the first digital filters were realized as models of con-
tinuous systems on general-purpose computers in high-
level languages for the purpose of analyzing statistical
data in nonreal time.) From the viewpoint of a pro-
grammer, a digital filter appears at first to be the solution
to a difference equation, and circuit topology seems
not too important. This cannot be further from the truth
because the choice of circuit topology is as intrinsic
to a given software realization as it is to the corre-
sponding discrete hardware realization. One needs only
to convince oneself that soft instructions solving a dif-
ference equation are, in fact, shuffling data about pre-
determined paths inside some architecture made up of
arithmetic elements, that is, hardware. The circuit to-
pology chosen determines the number and the order of
the computations, and vice versa. Why choose a to-
pology which might require more computation or more
storage? The answer has to do with numerical inac-
curacy. Certain topologies react better than others to
numerical errors. So for these reasons we often choose
not to use the most straight forward solution to the
filter difference equation in our software. This is where
the study of circuit topology comes in.

There are other considerations besides numerical in-
accuracy which impact our choice of topology. One of
the great disappointments in the past with conventional
16/32-bit digital filter implementation was the finding
that filter inputs needed to be scaled (attenuated). Scal-

DIGITAL FILTERS FOR HIGH-FIDELITY AUDIO

ing was required in order that overflow be avoided at
internal nodes in a given filter topology, even though
the output node itself may never have been threatened
with overflow. The unfortunate side effect of scaling
is that the SNR of the input audio is irrevocably wors-
ened by an amount proportional to the scale factor.
The same problem arises in analog designs. But good
analog filter implementation can accommodate this re-
duction of input level because it can start off with as
much as 120 dB SNR. For example, 4n analog signal
with 90-dB SNR scaled by, say, 20 dB is ideally the
same as an unscaled analog signal having 110-dB
SNR. The analog filter can easily accommodate this
SNR, and so analog scaling is generally not a problem.
But the situation is different in digital. Using a 16-
bit signal converter, we start out with a noise floor
due to quantization in the vicinity of —90 dB, the-
oretically. With our 16/32-bit digital filter itself only
having a 90-dB SNR, we really cannot ask it to rep-
resent a scaled signal now having a 110-dB SNR. We
would end up with an output signal having an SNR
of at most 70 dB.

A 24/48-bit architecture would ameliorate the scaling
problem for 16-bit signals, in analogy to the 120-dB
analog system mentioned. This is because using the
feedback techniques presented herein, a 24/48-bit ar-
chitecture digital filter can be made to operate with a
138-dB SNR. Input scaling a 16-bit signal by less than
48 dB would amount to a justification problem within
the 24-bit wordlength, that is, no data loss. Even so,
we are going to show how to sidestep the scaling problem
altogether, regardless of the wordlength of the processor
we are using, by clever choice of topology. For these
reasons we venture to suggest that any 16/32-bit digital
implementation employing input scaling is inadequate
for high-fidelity digital audio.

0.4.2 High Order

Constructing higher order filters from second-order
sections is done by cascading however many second-
order filters are produced by a design procedure. A
paratlel realization would require what is called a partial
fraction expansion, which transforms the given product
of biquadratic transfers into sums of biquadratics. These
procedures involve pole—zero pairing selection and the

Fig. 2. Direct form II, canonic; not for audio use.
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scaling of the input signal into individual sections for
optimal SNR performance and the prevention of output
overflow from individual sections. Since it is not pos-
sible, in general, to design high-order filters such that
each second-order section is unity gain, input scaling
is mandatory regardless of the section topology. If the
pole—zero pairing is chosen for as many close-to-unity-
gain sections as possible, and if the section topology
is chosen to be direct form I for the reasons to be
discussed shortly, then the scaling requirement can be
minimized and limited to consideration of only the out-
put node of each stage. (Jackson [5] gives closed-form
scaling and pairing procedures.)

The construction of higher order filters from cascades
or parallels of second-order sections (“biquads™) is the
best approach because one soon discovers that the direct
form implementation of high-order filters leads to geo-
metric increases in the range of coefficient values,
pole—zero sensitivity, and truncation noise recircula-
tion. Based on the material presented in this paper, we
will always want to choose the parallel and cascade
forms I, as given by Jackson [5]. He notes that parallel
realizations, while sometimes being less noisy than
cascades, have very high zero sensitivity to cocfficient
quantization, and so cascades are often preferable. (Note
that some of Jackson’s analyses still account for trun-
cation before accumulation.) Graphic equalizers are
traditionally realized as parallel second-order stages,
while parametric equalizers are cascade implementa-
tions having individual second-order stages forming a
complete filter.

The only direct high-order topology which is known
to elude both the scaling and the truncation noise re-
circulation problem at once is the Gray—Markel ali-
pole four-multiplier ladder [6] (Fig. 4e). For simplicity’s
sake, in this paper we will constrain all our filters to
be biquadratic, and we want their magnitude responses
to be deviations from unity gain. Therefore we will be
able to show how to skirt the scaling issue totally. If
we speak of a cascade of second-order sections, it will
usually not be in reference to the construction of a
high-order filter. Each second-order stage will itself
be a complete filter.

Aside from this cursory discussion of higher order
filters, all of the work in this paper will be limited to
complete second-order digital filters, where all coef-
ficient values are bounded in magnitude by 2 [Eq. (30)].
Later we will show examples of second-order filters
having high gain and high @ factor. This comes about
because of the proximity of the pole—zero pair in those
designs.

We will now reintroduce a classic topology which
inherently eludes the input scaling requirement, hence
picking up some free SNR.

1 CIRCUIT TOPOLOGY: SCALING AND
OVERFLOW

We will abruptly end our search for the best digital
audio filter circuit topology with the most simple to-
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pology, the direct form 1 noncanonic implementation
of the second-order digital filter. This circuit is shown
in Fig. 1. The second-order difference equation which
describes the output y(n) is given in Eq. (3) and is
straightforward to derive from Fig. 1,

y(n) = Zax(n — i) + Zbhy(n — i) . 3)

Had we implemented this second-order difference
equation directly in software, Fig. 1 would represent
the topological choice we had uawittingly made. The
direct form II filter circuit topology shown in Fig. 2 is
chosen, historically, in preference to direct form I in
Fig. 1 because it has superior truncation noise per-
formance when both are implemented with truncation
prior to accumulation. Otherwise, the direct form I is
better. The direct form II aiso has two less storage
(delay) elements, which yields the minimum number
of storage elements for the second-order topology.
Hence the term canonic topelogy (for “minimal” to-
pology) is often used synonymously. The equations
that describe the second-order filter in Fig. 2 are

it

4 + Eb, - i
w(n) x(n) w(n i) @

Sawin — i) .

il

y(n)

These simultaneous equations can be simplified to
Eq. (3). Implementing these equations in software rep-
resents the choice of the canonic topology. The two
other standard forms, which are the circuital transposes
of the direct forms I and II, are shown in Fig. 3. There
are many other topologies that embody the second-
order section. The numerous topologies possess different
characteristics with regard to the recirculation of trun-
cation noise. These topologies can each be quantitatively
characterized by SNRs of input signal to truncation
noise power, and each topology is said to have a par-
ticular intrinsic “noise gain.” Agarwal and Burrus |7]
published an excellent article on this topic, and the
topic is collectively referred to as roundoff noise [8].
In this paper we substitute the term truncation sincc it
is this and not rounding which will be performed in
our filter programs (for good reason).

We choose direct form I because the truncation at
the accumulator output is restricted to only the feedback
paths; thus it will be easier to compensate. A casual
scrutiny of this familiar topology reveals that there is
only one accumulator, hence for truncation postaccu-
mulation, one noise source. We choose the direct form
I also because of its unique overflow properties. Notice
in Fig. 1 that all the internal paths of this second-order
section converge at this one accumulator. Further, the
output of this mecca is attached directly to the output
of the filter itself. Therefore by designing the filter for
unity gain from input to output, we can ensure that the
filter output y(n) will not overflow under most real
operating conditions. During the course of the calcu-
lations, that is, at intermediate steps in the accumulation
of the final output, the accumulator is likely to overflow
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many times. Jackson showed back in 1968 [3] that
because 2’s complement arithmetic is a modulo math,
as long as the final result falls into the numerical range
of the accumulator (the first modulo), intermediate ac-
cumulations may be allowed to overflow any number
of times (traverse other moduli) without causing an
erroneous accumulation. This means that the effective
wordlength of the accumulator in the direct form I is
much greater than its actual wordlength.

We have, therefore, infinite headroom at the internal
nodes using the direct form I topology because all the
internal nodes feed the one accumulator. The internal
nodes which feed multipliers are not capable of overflow
(by design), so there is no need to scale the input signal;
hence no potential loss in the signal’s SNR. Another

x (n}
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way to look at this is that we have an infinite headroom
accumulator.

To take full advantage of modulo arithmetic we will
never want the accumulator to autonomously operate
in the saturation mode. If overflow is detected at the
final output, then saturation must be performed there,
but only under program control.

These advantages cannot be capitalized on using the
canonic topology and, for that matter, in most other
topologies because they have at least two accumulators.
The overflowed output of one of them will invariably
feed back from an internal node into a multiplier input,
which can only operate on fixed wordlengths (Fig. 4).
In order to prevent this from happening, we would
somehow need to ensure that the transfer from the input

y (n)

v

x (n} 2

Z-i

3° Z y (n)

Z—i

Z-i

3.

Fig. 3. (a) Direct form Il transpose; for audio use. (b) Direct form I transpose; not for audio use.
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to each of the sensitive internal nodes did not exceed  purposes and possesses all the desired characteristics,
unity, thus precluding accumulator overflow. [Notice  but we will only work with the direct form I in this
that the transpose of the direct form II (canonic) to-  paper.] Scaling the input with respect to the internal
pology shown in Fig. 3(a) is equally suitable for our  nodes is, thereforc, mandatory for the canonic topology.

All-Pole,

(4

All-Pole

(e)

Fig. 4. Some second-order topologies. (a) Direct form I; has one accumulator. (b) Two-multiplier lattice; k; — kikz = by,
k;= b,. (c) Rader—Gold “coupled” or “normal™ form in one guise. (d) Agarwal-Burrus. (¢) Gray-Markel four-multiplier
ladder.
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So, we do not want to use it. Lower noise topologies
such as the Agarwal-Burrus topology [7], [9] (which
is a variation of the Rader—Gold topology) suffer from
the same problem and thus require scaling.

1.1 Modulo Math

Two's complement addition can be thought of in
rings or moduli. The circumference of the ring is dictated
by the greatest magnitude representable by a given
wordlength. As an example, consider the sum of two
positive numbers that exceeds the available wordlength,
which is represented pictorially in Fig. 5. The two
positive numbers can each be represented at a location
within the first ring. For the sum, we can visualize the
result as having gone into the second ring, like the
minute hand of a clock after one hour has elapsed. If
a third number is now added which is negative and of
the proper magnitude, then the clock hand will come
back somewhere into the first ring and the result will
be correct, even though the intermediate result was in
error.

1.2 Unity Gain

By the term unity gain filter we mean a filter that is
designed as a deviation from unity. Several unity gain
filters are shown in Fig. 6. Although we implied in the
preceding discussion that designing for unity gain will
ensure no output overflow, there are three qualifications
to this reasoning which compel us to perform overflow
detection at the output on a per-sample basis and to
saturate the output on detection of overflow there.

EXAMPLE:
DESIRED | MODULD
RESULT | RESULT
32512 32512
+ 286) + 256
327681 -32768 (2nd Modulo)
- 768{ - 768
32000] 32000 (4st Modulo)

DIGITAL FILTERS FOR HIGH-FIDELITY AUDIO

1.2.1 Boost Filters

Unity gain design implies that we cannot design boost
filters. We will dispel this idea now. To design a boost
filter (having a gain that exceeds unity) is fine as long
as input signals falling in the frequency region of the
boost are such that they do not exceed unity after
boosting. If the request for a boost is because of a
paucity of energy in the corresponding frequency region,
then the threat of overdrive is small. So just as with
analog filters, it is up to the user who requests a boost
to ensure that the inputs are not overdriven. If this
cannot be done conveniently, then the filter could be
redesigned by dropping the absolute level of the transfer
function. This would be equivalent to scaling the input
by some desired amount. The point here is that there
need be no inherent flaw in the filter implementation
itself which demands the use of scaling at all times.

1.2.2 Obtuse Signals and the L, Norm

It can be shown that there exist nonsinusoidal well-
behaved input signals which will drive a unity gain
filter output past unity. For example, the time-reversed
impulse response of a filter, when used as input to that
same filter, will drive the output past unity. (The in-
terested reader is referred to the topic of “Matched
filters™ [10].) So designing a filter for a unity gain
transfer function does not ensure the absence of overflow
at the output for all input signals.

Input scaling criteria have been developed to prevent
overflow at any node of a given topology, although the

0

Jackson's Rule: Any number of additions
and/or subtractions may occur. Interme-
diate resuits and operands may fall into
any modulo. As long as the final result is
made to fall into the first modulo by design,
it will be representable in two's complement
al the chosen wordlength, and a valid re-

sult.

Fig. 5. Two’s complement is a modulo arithmetic. The first modulo (ring) for 16 bits is shown. The arrows help visvalize
the traversal from the first into the second modulo and then back again.
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sensitive nodes are only at multiplier inputs, as pre-
viously discussed. One of these criteria generates scale
factors referred to as L, norms, which are derived in
the frequency domain in the following way:

1 lip
[IFil, = (; j“" |F(@))? dw) ®)
70

where F(w) is the transfer from the input to the sensitive
node and w; corresponds to the sample rate in radians
per second. A particular value of p is first chosen and
the expression is evaluated for every sensitive node.

L, is then assigned as the inverse of the maximum |{F|,
w1th respect to all the nodes, and is then used as a
scalar to the input of the filter section in question. The
values of p usually adopted are 1, 2, or infinity. The
case p = 1 ensures that the mean of the magnitude over
frequency at the sensitive node will not exceed that of
the input, while the case p = 2 ensures that the average
power over frequency at the sensitive node will not
exceed that of the input. When p = o, this norm is the
most conservative of the L, norms because in this case
||F||, becomes simply the maximum of |F(w)| with
respect to frequency. Intuitively, we can understand
why this is conservative because the assumption is being
made that all the filter input energy resides at a single
frequency [5]. This choice of p (infinity) is convenient,
however, for test purposes.

Not being the most severe scaling criterion, the L,
norm will not guard against the time-reversed impulse
response as input. In practice, though, such obtuse
signals which can potentially overdrive filter outputs
are infrequent {5], [7]. Because we use the direct form
I, it is necessary to think about scaling the input with
respect to only the output node. Therefore, while not
precluding output overflow, the unity gain design cri-
terion is usually sufficient corresponding to a p value
of infinity in the frequency regions of precisely unity
gain. The responsibility to ensure that boost filters are
not overdriven is, again, left up to the user [35, p.
1008]. (Recording engineers typically work at approx-
imately 8—24 dB below saturation to give themselives
adequate clipping headroom.)

1.2.3 Overflow Prevention and Practice

Overflow detection must be performed at each output
stage in a cascade on every sample output, and upon
detection, saturation of the affected output (appropri-
ately positive or negative) must take place. Regardless
of the precautions taken to prevent output overflow,
detection is mandatory under absolutely any and all
conditions in a real-time operating environment. If
output saturation is not performed, the filter output
will be a hard nonlinearity, due to 2’s complement
wraparound, which is never audibly pleasant. If not
performed on a per-sample basis, then upon recovery
from the overflow condition, the filter can enter into
weakly nonlinear modes which only show up as subtle
but constant deviations from nominal THD + N mea-
surements performed on the filter output for an input
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sinusoid. A theoretical explanation of these overflow
oscillations is not given here, but can be found in the
standard literature. We stress that saturation is imple-
mented only for the final output of each stage, as pic-
torially represented in Fig. 7 (ignore the truncator Q
box for now), and not during intermediate calculations.

The proper way to detect output overflow is discussed
in Appendix 2.

1.3 Summary

By designing unity gain filters using direct form I
structures, we can skirt the input scaling issue altogether
by allowing intermediate accumulator overflow. The
choice of the direct form I topology does not exclude
us from considerations of the effects of recirculating
output truncation noise, however, so we will have to
deal with this noise problem in a different manner than
by judicious choice of topology. For a good survey of
standard topologies see [12].

2 TRUNCATION NOISE AND ITS PROPAGATION

The currently available DSP processors, such as the
ADSP-2100 and TMS32010, routinely provide double
wordlength products and accumulations. This is a tre-
mendous advantage to the DSP algorithm designer be-
cause it obviates the need to consider truncation noise
effects at any node other than the output node in the
direct form I digital filter structure.

Accepting the fact that the direct form I is by no
means the most quiet topology, we must now deal with
truncation noisc generated at its output. We must con-
sider the effect that this noise has on filter operation
when unavoidably fed back into that filter. First-time
designers of digital filters tend to ignore this aspect of
the implementation because it is considered a second-
order effect. If the application is one that involves fi-
delity of reproduction or accurate frequency synthesis
[23], then this aspect should not be ignored. On the
other hand, if the primary interest is an implementation
ending up in a low-end sound effects processor, then
this topic need not be of concern.

Fig. 8 explicitly shows the direct form I topology
having the nonlinear truncation operator (@ for quan-
tizer) at its output. Fig. 7 shows how the truncator and
the saturator are used in the same circuit. We omit the
saturator in the remaining figures for clarity.

2.1 Low Signal Level Aberrations

The most apparent manifestation of the effect that
output truncation has on the output signal of a second-
order digital filter occurs when low-level signals are
input. An anomaly emerges as a discrepancy between
the transfer function of the filter for the full-level (unity
amplitude) input as compared with the transfer function
for an attenuated input signal. For ideal linear filters,
the transfer function is supposed to be independent of
the input signal level. Let us say that a sinusoid at an
amplitude approximately 30 dB below unity is input
to a 16-bit digital filter having a modest gain and low
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Fig. 6. Unity gain design.
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Fig. 8. Direct form I having truncator.
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critical frequency. Then independent of the resolution
of the coefficients, the output sinusoid will exhibit, to
the eye, a variety of amplitude aberrations when viewed
on an oscilloscope. These are a direct consequence of
the nonlinearity introduced by truncating the accu-
mulator output.

This effect is not hard to reproduce in the laboratory.
The easiest one to see is called the jump phenomenon.
This aberration was named by Kristiansson in 1973
during his study of it [13]. The phenomenon appears
as abrupt shifts in the amplitude or dc level of a digitally
filtered sinusoid.

The truncation operation is unavoidable because the
inputs to the multipliers must be 16 bits while the ac-
cumulator accepts and produces 32-bit results. Also,
the outside world is most likely 16 bits, so that regardless
of the accumulation wordlength, the filter output must
pass on 16-bit signal data. Unfortunately the amplitude
of the transfer function at any one point along the curve
is not a constant but is rather some function of time as
caused by this nonlinearity. Needless to say, as the
engineers of these digital filters, this performance falls
short of our expectations.

The aberrations are even more pronounced at low
input frequencies, less than 100 Hz, where one does
not have to go as far down as —30 dB to start seeing
these effects. They can be seen at input levels of 0 dB.
If a common pen plotter is used to characterize a digital
filter over frequency, then small ripples will be seen
in the plot that are not the same among multiple plots
of the same transfer. Further, in the case of 0-dB mid-
frequency signals, even if the amplitude aberrations
are not apparent on an oscilloscope or a pen plotter,
then a THD + N analyzer picks up the problem by
calculating a figure upward of 10 dB worse than nom-
inal. Indeed, the gentlest filters will cause at least a
10-dB degradation in THD + N. If the amplitude ab-
errations are so bad as to be visible, then the degradation
to THD + N will be much more than 10 dB.

There are at least two workable solutions to this
problem, but let us first perform a simple analysis of
the truncation error in an attempt to put a handle on
it. Once this is done, the solutions will be straightfor-
ward.

2.2 Truncation Error Math

Referring to Fig. 8, we have designated the 32-bit
quantity y(n) as the fixed-point output of the digital
filter while y(n) is the truncated output. We would like
to derive a frequency domain expression for the trun-
cated (actual) output signal y(n) in terms of the input
and truncation error signals. To do this we may define
the ideal output y(n) as a 16-bit integer y(n) plus a
signed fractional part, the truncation error signal e(n),

y(n) & H(n) + e(n) . (6)

The input signal, generally a 16-bit integer, is called
x(n), allowing us to write
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y(n) = Zax(n — iy + Zbyn — i) . )

This is the equation that would be used in a program
to perform the filtering function. The 32-bit output
y(n) is then truncated by taking the integer part and
storing it as y(n). We can gain more insight into Eq.
(7) by first using Eq. (6) to rewrite it as

y(n) = Zax(n — i) + [Zby(n — i)
— Zbie(n — )] . (8)

Since we know the source of the error signal e(n),
it is not truly a random variable, neither is it uncorrelated
to the output signal. Indeed, the error signal is deter-
ministic because for the same input signal and coefficient
set; it can be replicated exactly. Therefore we may
justifiably assume that it has a frequency domain rep-
resentation.

Then, using Egs. (6) in (7) in the frequency domain,
Za,»z_i

Y(z) = X(2) I—_—zb—lz:

- E@) &)

I
1 - Zb,-z_i ’
This important Eq. (9) states that the truncated-output
spectrum of the classical direct form I digital filter
topology is equal to the ideal filter transfer times the
input spectrum plus some “error function,” multiplying
the truncation error spectrum E(z). The truncation error
spectrum is amplified by the poles of the filter transfer
function whether the filter boosts or cuts, and is therefore
highly correlated with the resonances of the filter. This
is bad news because the gain introduced by the poles
can be as large as 90 dB for some practical cases. It is
interesting to note that E(z) is not affected by the feed-
forward paths in this circuit. This is one of the reasons
we chose this topology since this is an advantage.
Eq. (9) will serve as our reference. Any improvements
made to minimize the effects of truncation error will
be gauged to the last term in Eq. (9) since this is what
we are left with if we do nothing about the truncation
error problem.

2.3 Truncation Error Feedback Math

The first solution to impact the truncation error spec-
trum was suggested to us by a Philips Corporation doc-
ument [14], which describes the DSP involved in the
design of their oversampling D/A converters which
have found wide use in Compact Disc players. Fig. 9
shows the first-order error feedback scheme. Here Sl(n)
is again the 16-bit truncated (integer) value which goes
to the outside world, while y(a) is the 32-bit nontrun-
cated output signal. The error signal e(n) is a signed
quantity formulated as implicit by Eq. (6),

e(n) = y(n) — $(n) . (10)

We like to define the error in this sense because it is
sometimes a facile method from the programmer’s point
of view, where positive-signed inputs to the accumulator
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will result later. This means that the error signal is
formed by subtracting the 16 bits that form the integer
part of the 32-bit accumulator output, from the accu-
mulator itself. This assigns the signed fractional value
to the error signal whose magnitude can, thus, never
exceed 1.

In all our error feedback schemes we will never use
rounding to form y(n) simply because it uses more
program steps and gains us little advantage. Recall that
statistically, the difference between rounding and
truncation is a ¥ LSB dc offset in the time average of
the error signal. Hence the output signal spectrum also
experiences a small dc offset when truncation is used.
Rounding is used when the absolute dc value of a quan-
tity is of concern; dc is of little concern in the audio
signal.

Notice in Fig. 9 that the error signal e(n) is delayed
and then fed back to the accumulator. We show a mul-
tiplier K = =1, =2, =4 one value (to be determined)
multiplying the delayed error signal. In order to avoid
the use of the hardware multiplier, X is constrained to
a nonzero trivial binary integer. Although we will de-
termine the optimal value for X given this constraint,
later we will relax this constraint at the expense of
more intensity. The 16-bit input to the filter structure
is x(n). We wish once again to find a frequency domain
equation that expresses the truncated output signal in
terms of the input and truncation error signals. As be-
fore,

y(n) = Zax(n — i) + TbJ(n — i)
+ Ke(n — 1) . an
This is the equation we would use in our program.
Notice the new term in Eq. (11) as compared with Eq.

(7). $(n) is formed within the machine by truncating
y(n), while e(n — 1) is formed using Eq. (10).

a,
x (n) @
¥
FAS a,
X
Z-i
a,
X
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Using Eq. (6) in Eq. (11) we get
y(n) = Zax(n — i) + Zbyn — i)
— Zbhie(n — )] + Ke(n — 1) (12)

and in the frequency domain, using Eq. (6) on the left-
hand side of Eq. (11),

1= K
1 - Eb,-z"i ’
(13)

Ea,-z_i

Fo = X0 g

-~ E(2)

Eq. (13) has the same form as Eq. (9), except that
the error function, the last term in Eq. (13), has been
modified slightly due to the new error feedback path.
What we wish to know at this point is whether the
modification to the error function has diminished the
impact of the truncation error E(z) at all. We have
already seen how the poles of the filter amplify the
truncation error, as shown by Eq. (9). Does the intro-
duction of a zero in the numerator of this new error
function make it smaller in some way? The optimum
choice of a zero location would be somewhere right
upon the unit circle in the z plane because this would
bring the magnitude of the error function down to ab-
solute zero at some audio frequency. The error function
now has a zero at z = K. But since K is constrained to
be a nonzero binary integer, then the only two choices
lay upon the real axis at z = =1. A zero at z = 1
corresponds to 0 Hz, whereas z = —1 would correspond
to a zero at the Nyquist. The choice at first appears to
be arbitrary from a theoretical point of view. The ac-
quisition of a zero in the error function will certainly
diminish its impact in either the very low or the very
high frequency region. We choose a positive-valued K
(= 1) for empirical reasons discussed below.

7n)

2 y (n) 6
)2 >

Z—i

Fig. 9. First-order error feedback.
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Fig. 10 shows sketches of the various error situations
assuming K = 1. The horizontal line in Fig. 10(a)
represents the magnitude of E(z), here assumed to be
white. Fig. 10(b) shows the error function of Eq. (9)
multiplying E(z), where E(z) is amplified by the poles
of some arbitrary second-order filter. Fig. 10(c) shows
thenew 1 — z~ ! term by itself, from the error function
of Eq. (13). Notice that there is a boost above unity in
the high-frequency region in this graph. This graph
shows that the new zero term will attenuate E(z) at
some frequencies, but will boost it at others. The at-
tenuation at dc is complete. Fig. 10(d) shows the result
of putting the zero into the numerator of the error func-
tion of Eq. (9), which results in the error function of
Eq. (13) multiplying E(z).

We believe that the situation shown in Fig. 10(d) is
an improvement over that in Fig. 10(b), but it is not
obvious why. Fig. 10 might persuade us that since the
zero in the numerator acts to boost high-frequency
truncation noise, we should not use this “error feedback”
technique. But we have yet to contradict the classical
assumption which states that the truncation noise spec-
trum E(z) is white. A contradiction would have bearing
on our decision. Our observations in the laboratory tell
us that much of the energy in E(z) lies in the low-
frequency region. O’Donnell [15] independently ob-
served a nonwhite truncation error spectrum on other
second-order topologies and filter types years earlier.
So the graph of the truncation error E(z) might be more
realistically portrayed in Fig. 10(a) as a low-pass signal.
Knowing this, we choose to place the zero introduced
by the first-order error feedback scheme at 0 Hz, which
is the choice nearest to the frequency region where
most of the truncation noise is found in practice.

There is a far more practical reason to choose to put

4 E @)
1
B f
(a)
A _
127}
24
NYULEIST ’>f
(©)
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the error function zero at dc, that is, if we know ahead
of time that the boost of E(z) by the poles of our filter
predominates in the low-frequency region. Had we de-
signed a filter whose critical frequency were nearer
Nyquist than dc, we may well have decided to try
K = —1 for an error function zero at Nyquist, our
knowledge of E(z) notwithstanding.

2.3.1 First-Order Error Feedback Summary

The degree of amplification of E(z) by the poles of
the filter function is now mitigated by the introduction
of a new term in the numerator of the error function
of Eq. (9), as shown in Eq. (13). It has been found
that this trivial feedback scheme really helps to linearize
an inherently nonlinear digital circuit. The amplitude
aberrations that were seen in low-level filtered signals
not having the benefit of error feedback, actually dis-
appeared when the feedback was introduced, to the
extent that the impact on a reference THD + N mea-
surement was negligible. (The reference THD + N
measurement was made bypassing the digital filters
altogether.) Further, the scheme only requires three
additional one-cycle TMS32010 instructions per stage,
making it computationally attractive.

2.4 Second- and Higher Order Error Feedback

Fig. 11 shows a more powerful error feedback
scheme, this time using two trivial multipliers for sec-
ond-order feedback. Using reasoning similar to that
above, the optimal K coefficient set places zeros on
the unit circle in the error function closest to the an-
ticipated frequency region of high noise boost by the
filter poles [16]. These zeros do not adversely affect
the filter transfer function in any way. Table | sum-
marizes the viable choices of trivial multipliers and

A

|E (z) || "Error Function'

(b)

A

E (2)| i-2*||"Error Function”

(d)

Fig. 10. Presumedly white truncation noise (a) is passed through a digital filter having an error function as in (b) and an
error feedback network having the transfer (¢), resulting in truncation error spectrum shaping (d).
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their associated frequency regions, normalized to 2.

While not unequivocally optimal, these error feedback
schemes are economical, and their power should not
be underestimated. Truncation noise recirculation is
worst for filters of high Q or extreme critical frequency.
As it turns out in audio filter design, you get the double
whammy for extreme critical frequencies because poles
need to be quite close to the unit circle to counteract
the proximity effects of the mirrored (conjugate) pole.
This is the reason why these feedback techniques are
effective. They reduce the truncation noise in the filters
that need it the most.

Still more elaborate feedback circuits have been de-
vised such that the error function spectral amplitude
is pushed predominantly into the high-frequency region
[17] while squelching the lower frequency noise toward
zero over any desired bandwidth. Of course, these
schemes proportionately boost, by many times, the
power of the high-frequency noise, but it is assumed
that some other mechanism will be designed to filter
that noise out.

These error feedback schemes have become collec-
tively known in the literature as error spectrum shaping
(ESS) [11], [18], [19]. All these DSP techniques ac-
complish the same goal: they selectively shape the
truncation error E(z). ESS techniques were developed
with an eye toward trivial error feedback coefficients,
but there is no necessity for this constraint if we are
willing to pay the price. We now explore another ESS
scheme which is optimal over the entire band, but just
a bit more intensive than the error feedback schemes
discussed so far.

2.5 Truncation Error Cancellation

We constrained the error feedback coefficients in our
derivations above to be integers. We relax this constraint

x (n} )
oS
FAS a,
X
Z-i
3.

X
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here. In Higgins and Munson [20] it is shown that the
truncation error cancellation scheme, which follows,
can be considered to be the optimal ESS filter, but with
no constraints imposed on the feedback coefficients.
Further, using a classical linear statistical analysis they
show that the 16/32-bit truncation error cancellation
scheme is equivalent in noise performance to a double-
precision (32/64-bit) realization and outperforms linear
state space (state variable) topologies. It is only when
we go to a 24-bit processor employing truncation error
cancellation that performance exceeds the double-pre-
cision realization.

We point out two advantages of the following scheme
over a standard double-precision implementation: 1)
only the signal feedback paths require double-precision
bit widths, and 2) the multiplier inputs are always of
the signed variety.

2.5.1 Wordlength Considerations

This new error “cancellation” scheme was presented
in a thesis by Rothaar [21], where wordlength of coef-
ficients and signal paths were of great concern. The
criterion in that thesis was that no degradation past the
16-bit noise floor of the input signal would be tolerated
over the entire audio band for all filter settings. it was

Table 1. Error feedback zeros.

K, K, Region B
+2 -1 0 Twice
-2 —1 7 Twice
0 +1 0and
+1 -1 /3 Twice
—1 -1 273 Twice
+1 0 0 Once
-1 0 7 Once
K.
X
z-i
1% K‘
X
[ -
Z 1
eln)
A (3
% y () R £~ ¥ in} .
b, YA
X
Z-i
b,
X

Fig. 11. Second-order error feedback.
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shown that to achieve that performance from a standard
second-order section without error cancellation required
at least a 34/54-bit (multiplier/accumulator) architec-
ture. This means 34-bit signal paths. (54 bits was the
limitation on the simulator.) It was illustrated how filters
having low critical frequencies place the most demands
on the second-order topology. A wordlength of 24 bits
was ultimately settled on for the coefficients; 16 bits
was not enough. The signal data paths followed suit,
resulting in a 24/48-bit system with error cancella-
tion.

Rothaar’s 24/48-bit system using error cancellation
is ideal for the most demanding high-fidelity audio dig-
ital filtering applications since the 24-bit internal signal
paths guarantee that the filters themselves operate with
about a 138 dB SNR. It is advantageous to have the
interstage signal paths exceed the [6-bit input word-
length because in this manner each stage’s output-
truncation noise propagating through a cascade can be
kept well below the signal noise floor, since only the
last filter in the chain need truncate its output at the
16-bit level. Assuming that truncation noise would ac-
cumulate through a cascade of N error-canceling second-
order stages according to the absolute worst-case clas-

sical assumption of correlated noise sources [10 log .

(N%)], this still means that hundreds of filters could
be cascaded before the DSP designer would even need
to consider its effects on a 16-bit signal. On the other
hand, and in the best case of the classical assumption
concerning uncorrelated truncation noise propagation
(10 log (No?)] the passing of 16-bit signal data between
stages results in an immediate buildup above the —90-
dB signal noise floor, approximately 3 dB after one
stage, 6 dB after two, 9 dB after four, 12 dB after
eight, and so on. (The best case, that is, uncorrelated
noise sources, is usually the classical assumption taken,
and although the least conservative of the classical
analyses, it is the one most proven in practice. The
worst case would double the decibels in the preceding
list. For more on classical noise analysis, see {22, chaps.
3, 71, [5, chap. 11] [4, chaps. 9, 8].)

2.5.2 Signal Justification

If we agree that the coefficients need be 24 bits wide
for sufficient control over low critical frequency filters,
then given a 24/48-bit system, the question arises as
to where one places the 16-bit input signal within the
24-bit register. We have infinite accumulator headroom
as discussed earlier, so we need not worry about ov-
erflow. Since it is those bits to the right of the binary
point that determine noise performance, we want to
position the input signal with full left justification be-
cause the binary point follows the LSB of the 16-bit
{QO) input signal and we want as many fractional places
as possible. We might think of this left justification as
a scaling upward, by 48 dB, of the 16-bit input signal
with no loss to the original quantization SNR of 90
dB. Now if the input signal absolutely must be scaled
downward, as in a high-order filter design, there is
some room. Regardless of the justification, we would
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always want to pass the 16-bit integer plus 8-bit-frac-
tional output signal to the next stage in a cascade for
the reasons discussed above.

There is a trend in DSP chip design that provides for
headroom bits in the accumulator, that is, the accu-
mulator bit width exceeds the product register width.
The section of this paper on scaling and overflow has
shown this feature to be superfluous for IIR digital
filtering applications.

We now show that the technique of truncation error
cancellation will keep the noise level of each individual
16/32-bit second-order stage at the 16-bit boundary.
The only significant noise introduced by each second-
order stage itself will come when the one truncation is
performed at its output.

2.6 Truncation Error Cancellation Math

Referring again to Fig. 11, we wish to write a fre-
quency domain equation for the truncated output in
terms of the input and truncation error signals. This
time we will not place any constraints upon the error
feedback coefficients K.

y(n) = Zax(n — i) + Zb(n — i) + TK;e(n —i) .
(14)

This is the equation that we program. The multipli-
cations involving the fractional quantity e(n — 7) are
performed using no scaling because it is well represented
numerically, having no leading zeros. The decimal point
in the error accumulation is higher up in the accumulator,
though, and it must be shifted to the right before com-
bining it with the signal accumulation.

Using Eq. (6),

y(n) = Zapx(n — i) + [2by(n — i)

— Zhie(n — )] + LZKie(n — D) . (15)
If we set the K; equal to the b;, then they cancel each
other and Eq. (15) becomes

y(n) = Zax(n — i) + Tby(n — i), K;=b,.
(16)

The 16-bit error feedback paths in Fig. 11 now go
to 32-bit widths after the multiplications because they
are no longer trivial. In the frequency domain, using
Eq. (6) in Eq. (16),

ZG;Z-i

Y(z) = X(z) (l—t“zbﬁ_—) - E(Z) .

Comparing Eq. (17) to Egs. (13) and (9), this is the
best situation for the truncation noise that we have yet
encountered since the error function is essentially gone
as there is no amplification of E(z) due to the poles of
the filter. Eq. (17) says that the truncated output spec-
trum is equal to the ideal filter function of the input

an
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spectrum plus the (negative) truncation error spectrum,
The error function is decoupled from the filter transfer
function.

This is indeed the best we can ever do with respect
to truncation noise performance. It just does not get
any better than this, no matter what circuit topology
is used. Since the ideal output y(n) is a fixed-point
number having a nonzero fractional part, when we
convert the double-precision output of the accumulator
y{n) toits 16-bit single-precision truncated value y(n),
the truncation error spectrum unavoidably remains. But
this is all that remains. The truncation error does not
feed back. If we can accommodate the added compu-
tation time due to the two new feedback paths in Fig.
11, then this result is fabulous because we have a way
to implement extremely quiet filters. We mention that
this technique would be indispensable for high-purity
digital oscillator applications [23].

Notice that the requirements for perfect error can-
cellation in Eq. (15) are 1) the signal feedback coef-
ficients must equal the error feedback coefficients;
nothing is said concerning the precision of those coef-
ficients; and 2) no rounding may be performed in the
formulation of the error accumulation.

2.7 Truncation Noise Spectrum E(2)

If E(z) would add only 3 dB to the filter noise floor
when y(n) is formed, then why should we be so con-
cerned with it? The reason is because these second-
order filters will most likely end up living in a cascade.
(Higher order filters are often formed this way.) Onc
interesting application is that of cascading a number
of unity gain second-order filters to configure what is
called a parametric equalizer in which each second-
order filter exerts influence over a disparate part of the
audio band. Typical configurations will see four cas-
caded second-order stages that could add a total of 9
dB [10 log (No?)] of truncation noise to the —90-dB
filter noise floor. We need in that case to consider the
use of a larger wordlength processor (>16 bits) at a
premium.

The assumption that the truncation error spectrum
E(z) is white is, more often than not, false. We reiterate
that the preponderant error spectrum energy was em-
pirically found to be concentrated in the low-frequency
region. It has been said that the output truncation noise
could be much like that of analog-to-digital quantization
noise. This might be erroneously rationalized following
the garden path: The output y(n) of our second-order
filter could be made ideal by using error cancellation,
as shown by Eq. (16). If the input to an ideal filter is
a (sampled) sinusoid, then because it is a linear system,
the output must also be a pure sinusoid. Although the
input sinusoid x(n) was described using all integer val-
ues, the ideal y(n) must be described by the filter using
fixed-point {not necessarily integer) values. A truncation
to an integer is required to form y(n) from y(n), which
should be very much like the quantization performed
by an A/D converter in a successive approximation
when it gets down to the LSB estimate. . . .
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2.7.1 The Barnes Criterion

Barnes et al. [24] make the argument that quantization
noise and multiplier roundoff noise are very different
phenomena. Although he limits his scope to the output
of an isolated multiplier followed by a quantizer, we
should be able to extrapolate his results to the present
case which sees two multipliers input to an accumulator
where the quantizing operation follows the summation;
see Fig. 12. (In the standard direct form I structure we
have seen that the truncation error E(z) is impacted
only by the two feedback paths, the ;. This is one
reason why we chose that structure.) We will make no
attempt here to perform a statistical analysis that would
support this intuitive leap.

Barnes points out that while the conditions under
which quantization noise can be considered spectrally
white are quite mild, the corresponding conditions for
multiplier roundoff noise are comparatively much more
restrictive and highly dependent on the multiplier
coefficient value. Specifically, he states that roundoff
(or truncation) error will be white, uniformly distrib-
uted, and uncorrelated with the signal, in general, only
if the standard deviation of the input signal is greater
than approximately one half the full amplitude (unity)
signal level.

Narrow-band and low-level signals each violate the
criterion. In contrast, if the dynamic range of a wide-
band signal exceeds only 4 few quanta, then its quan-
tization noise can be accurately modeled as white in
keeping with the traditional analysis. But it was dem-
onstrated in [25], which dealt only with the topic of
quantization noise, that even for full-level (unity gain)
sinusoids, the ratio of sample rate to sine frequency
can easily be adjusted to produce a range of quantization
error characterization from purely harmonic to white
spectra, the point being that the spectrum of quantization
noise is highly signal dependent. Therefore we have
an argument that quantization noise is not always white.

We hope to have supported the hypothesis, by these
arguments, that the character of the truncation noise
E(z) is not generally white, but is highly dependent
on both the input signal and the values of the feedback
coefficients. It stands to reason, then, that in the par-
ticular case of a cascade of N second-order stages,
where the feedback coefficients are made to be disparate,
we might reasonably expect that the truncation noise
would amass according to the usual classical assumption
[that is, the least conservative assumption, 10log (No‘z)]
of uncorrelated noise sources, because the contribution
to the total error spectrum energy from each stage is
likewise disparately splattered about the audio band.

So, let us see how our 16/32-bit truncation error
feedback system fares in a little experiment.

2.8 Physical Measurement Example

In the implementation that follows we use 32-bit
double-precision coefficients, as opposed to adequate
24-bit, only because it is convenient to do so. As it
stands with the TMS32010, we are restricted to a 16/
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32-bit system with error cancellation. So we are forced
to perform the coefficient multiplications using double-
precision arithmetic, which might be tricky due to the
lack of an unsigned multiplication in the instruction

x{n) 1 Z 32 y (") Q ,

6, §in-2)

(©)

Fig. 12. (a) Barnes’s equivalent formulation. (b) Logical
extension. (¢) Intuitive leap.
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set. But an elegant method of double-precision mul-
tiplication will be illustrated when residual coding of
the filter coefficients is discussed.

We would now like to substantiate the preceding
work with actual measurements. Noise plus distortion
was measured using a Tektronix 5000 series audio ana-
lyzer and oscillator. The A/D/A coaversion process
was provided by a Sony PCM 701. Table 2 shows the
THD + N measurements for three digital filter test
setups. Each setup transfer is sketched in Fig. 13. The
first and third setups are cascades of four second-order
parametrics, while the second setup consists of a single
second-order section implementing a 60-Hz notch filter
having an incredibly high Q of 1200 and a gain of —60
dB. Both cascade setups arbitrarily sequenced the sec-
ond-order stages from lowest to highest critical fre-
quency. All these filters are minimum-phase unity gain
designs [1], use truncation error cancellation and double
precision (32-bit) coefficients via residual coding, as
presented later in this paper. Only the error canceliation
coefficients are single precision, which could be a li-
ability. The TMS320 code actually used is given in
Appendix 1.

The reference THD + N levels were measured with
the digital filters completely out of the measurement
path, that is, bypassed. Since there is no signal pro-
cessing going on during these reference measurements,
we can attribute all the noise above the theoretical —90-
dB noise floor of a 16-bit system to quantization noise
introduced by the A/D/A conversion process. Any noise
later introduced above the reference level is most likely
then due to either the truncation process or amplification
of the quantization noise floor by boost stages. Since
each THD + N measurement of a sinusoidal input en-
compasses the full audio bandwidth, the measurement
is repeated with various input frequencies only to pro-
vide diverse situations.

2.8.1 Cut Filter Measurement

For test setups 1 and 2, the cut filter cases, the THD
+ N level recorded in Table 2 was arrived at by sub-
tracting the actual level of attenuation of the unity am-
plitude input sinusoid from the (negative) instrument

Table 2. Digital filter noise plus distortion measurements.

T™D+N@B) B o
— 0 0 = 1200 0 = 20
Noise reference A = —18 dB A=-60dB A = +I18dB

level (dB) fe
(Filters bypassed)

Sinusoid input
frequency (Hz)

50, 500, 5000, 15 000 Hz
(Test setup 1)*

f. = 60 Hz fe
(Test setup 2)*

50, 500, 5000, 15 000 Hz
(Test setup 3)*

50 —80.0 -82.2 —-81.8 -79.5

100 ~81.2 —80.8 -81.6 -73.0

500 —82.7 —82.8 —82.0 —-78.5

1000 —83.0 —-82.7 -82.3 -78.0

5000 —82.8 ~82.0 ~82.2 -79.0

10 000 -82.5 -82.3 —82.0 -77.0

15 000 —82.6 —83.0 -82.1 ~80.0
Fs,opn = 34 470.45 Hz. “Unity” 2 0 dB. All setups use error cancellation.

* Test setup | —four cascaded presence filters having negative gain; Test setup 2—notch filter; Test setup 3—four

cascaded presence filters having positive gain.
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reading. This legitimate compensation serves to make
the measurements independent of the particular filter
transfer under test. We do this because we are interested
in the S/(THD + N) at the filter output from unity to
the noise floor. We presume that the noise floor is the
variable here.

Looking at Table 2, we see that the attenuating cas-
cade and the notch are doing quite well. They are in-
troducing little noise above the reference levels in this
particular system. This is shown by Table 2, which
compares the noise measurements for test setups 1 and

Ad B
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2 with the reference noise levels. If the reference levels
were closer to —90 dB, we might run into a problem
here with this 16/32-bit filtering scheme. Remember
that regardless of whether the filters under test boost
or cut, they still add truncation noise. Some of the
truncation noise may be getting filtered out by suc-
ceeding stages in the cascade.

We note in passing that this —60-dB notch filter is
stable and that it would be difficult to implement in
analog due to the required component tolerances. The
poles of this filter lie precariously close to the unit

N

Q=20
50 500 5000 15000 Hz] ~ f
a,= 0.996450761790
a,= -1.992821454486
a,= 0.996443656208
b= 1.992821454486
@=1200 b,= ~0.992894417998
Fs = 44.0559 kHz (1]
+-\/==0.05Hz @ -57dB
-80 L
: : 3 £
40 60 90 [Hz] f
K°
8 L
(1 R
§=20
50 500 5000 15000 [Hz] f

Fig. 13. Filter test setups 1, 2, 3.
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circle, as this is an extreme-case design [1], [26]. The
noise gain of this topology, not using the truncation
error cancellation network, would be 85 dB, the gain
of the poles, making this filter unusable (THD + N =
—5 dB) without error cancellation. (See Eqs. (30) for
by = 1.992821454486 and b, = —0.992894417998 at
a sample rate of 44.0559 kHz [1].) As it stands, we
are seeing a THD + N that is less than 1 dB beyond
the system noise reference. This filter has been described
as “surgical,” seeing that its bandwidth (at —57 dB)
is only 0.05 Hz at the null, while the (- 3-dB) bandwidth
at the skirts is 50 Hz. All the critical parameters of
this filter were verified to within the resolution of the
measurement apparatus. Resolution in frequency = 0.01
Hz, resolution in level = 0.1 dB.

2.8.2 Boost Filter Measurement

In the case of test setup 3, the amplifying cascade,
the input signal level was adjusted downward below
unity until the output signal level reached unity. The
data in Table 2 indicate that test setup 3 is not doing
too well. We're seeing increases of up to 8.2 dB above
reference. But it must be remembered that the boosting
is above unity and any noise falling beneath each re-
spective parametric will be amplified. Even if there
were no truncation noise, the system noise floor might
be boosted, thus interfering with our desired measure-
ment of the increase in truncation noise. If we calculate
the worst-case total boost of white noise across the
audio band by all four parametrics, it is about 7.6 dB.
Since all four boost filters have the same Q factor (al-
ready quite high at 20), the majority of the noise boost
comes from the higher critical frequency filters because
they span more bandwidth. We might say that it must
be the quantization noise floor that is getting boosted,
but the THD + N is varying so much with input fre-
quency that we are forced to conclude that it must be
truncation noise that is getting boosted. This is unfor-
tunate because it means that we need to squelch the
truncation noise further. The only way this can be ac-
complished with the topology we have chosen is to use
a 24-bit processor, but we still need the truncation
error DSP.

2.9 Going Further

Had we not used truncation error cancellation in the
experiment, all the THD + N readings would have
been horrific. The experimenter can easily verify that
the filter transfers we chose are actually quite difficult
designs to implement. We were more concerned about
whether we needed to use a 24-bit processor than
whether we needed truncation error cancellation. A bit
of experience tells us that we just cannot get along
without some form of error feedback, and so that was
taken for granted.

Probably the best way to measure the noise produced
by a particular digital filter is to implement it using a
DSP chip, and then monitor the output with a noise
measurement device. Computer simulations are some-
times cheaper and there are programs available. One
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such program is DINAP II: A Digital Filter Analysis
Program [27] from Purdue University. This program
performs noise analyses of user-specified topologies
in the time or frequency domain.

2.9.1 Midsummary

Thus far we have been able to alleviate any input-
level scaling requirements through a discerning choice
of filter topology, and the truncation noise problem
has been grasped. We examined digital signal processing
techniques known as error spectrum shaping (ESS),
which encompass both truncation error feedback and
cancellation. The primary purpose of ESS is to lower
the operational noise floor within each filter that we
implement. We decided that it would be best to use a
24-bit processor and some DSP in the form of ESS to
improve truncation noise performance for the most de-
manding applications. If we have such a processor at
our disposal, then 24-bit coefficients are necessary and
adequate for sufficient control over low critical fre-
quency filters. In this case we can skip the next section
on residual coding.

If we are using a 16-bit processor, then we will need
to find a way to gain precise control over the placement
of poles and zeros in the low-frequency region. Once
found, then we will have tackled the three major ob-
stacles standing in the way of high-quality digital fil-
tering. In the section that follows we will show how
to encode double-precision coefficients on any DSP
chip that does not have the ability to perform unsigned
multiplications.

3 RESIDUAL CODING OF COEFFICIENTS FOR
EXTREME CRITICAL FREQUENCY DESIGNS

This method of coefficient encoding is intended pri-
marily for the TMS32010, TMS32020, or any DSP
chip where unsigned multiplications are probiematic.
The reason for its contrivance is to elegantly perform
double-precision multiplications. Specifically, we
would like to use filter coefficients having 24-bit word-
lengths, but our multiplier only accepts signed data
having wordlengths of 16 bits. It will be convenient
to use 32-bit wordlength coefficients, so we will do
$0.

3.1 Residual Coding in a Nutshell

Consider the purely numerical problem stated as fol-
lows:

y = ax

where a is a double-precision and x a single-precision
binary integer. If we express a as having a high-order
part ay and a low-order part g at the bit level, then
we can say

y = agx(with suitable shift) + apx
[signed] = [signed][signed] + [unsigned][signed] .
The second multiplication requires an unsi gned input,
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so we cannot use a multiplier that only performs signed
arithmetic. We could force the MSB of a; to be zero
by shifting it 1 bit to the right before input to the signed
multiplier, but we lose precision, albeit 1 bit. Instead,
we redefine a; to make it signed:

A
a, = a —ay .

Now a is no longer set to the low-order bits of a
double-precision binary integer; it is a signed quantity.
In the detailed explanation that follows, keep in mind
that the complexity of the implementation is no better
or worse than that of a conventional double-precision
implementation using unsigned arithmetic.

3.2 The Details

Let us name the generic single-precision coefficient
c;. This is the fixed-point decimal representation of the
ideal floating-point coefficient, which we have seen in
our filter topology. The ideal floating-point filter coef-
ficient ¢g; is calculated by a filter design routine. We
define the signed difference between the ideal and the
single-precision coefficient as ec; and dub it the residual
coefficient.

We formulate ¢; in fixed-point decimal using the fol-
lowing:

Dac

¢ = I'O_UIL‘;;F,Z ) ‘ (18)
where the round function means round to the nearest
integer. We use the round function here because it will
later bound the residual coefficient to +0.5/29° which
will be advantageous when we encode it. The quantity
gc is the number of binary places following the binary
point in the coding of the single-precision coefficient
Ci.

To “code” a coefficient means to find a 2’s comple-
ment representation of the fixed-point decimal number.
To code ¢,

binary code(c;) = ¢;29¢ = round(cg;2%) . (19)

The resulting encoded integer, often expressed in
hexadecimal, is used directly in assembly code, rep-
resenting a 16-bit fixed-point binary number having g¢
binary places after the binary point. Therefore the sign
and integer part must be representable in [16 — gc]
binary places. If gc were 12, then we would say that
c; is a Q12 coded number (= [4.12]); a Q12 number,
for short.

The residual coefficient is formulated in fixed-point
decimal as

ec; = Cp; — Ci . (20)

The residual coefficient is encoded using an additional
scale factor that is equal to 29¢, because it is too small
to be represented adequately in a 16-bit fixed-point
format. Of couse, the filter program must account for
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the scaled residual coefficient in the calculations. Due
to the rounding procedure, after scaling, the residual
coefficient will have a decimal magnitude no greater
than 0.5,

binary code(ec;) = round(2% (ec;2%)) . 21

[Numerically, it has been found that it is better not to
simplify Eq. (21) by substituting previous equations
and then canceling like terms.]

The residual coefficient has ge binary places following
the binary point, and ge is not necessarily equal to gc.
A good choice for ge might be 15. In that case we
would say that ec; is coded as a Q15 number, meaning
that there are 15 binary places following the binary
point, one sign bit, but no integer bits [1.15]. For stable
second-order filter sections having unity gain and min-
imum phase, a good choice for gc would be 14 (that
is, Q14 = [2.14], having one integer bit) since the
magnitude of the coefficients is bounded by 2. Due to
idiosyncrasies of the TMS32010, we will set gc equal
to 12 in order to save four program steps per filter
stage, and ge to 14 for maximum headroom in the
separate residual coefficient accumuiation.

This notational method of working with fixed-point
binary numbers in terms of Q follows those conventions
set forth in the TMS32010 user guide [28]. The Q no-
tation follows the same rules as exponents in a by-hand
multiplication. For example, if the multiplier were a
16-bit Q12 number and the multiplicand were a 16-bit
Q14 number, then the product would be a 32-bit Q26
number, that is, the sum of the two Q factors. (Note
the redundant sign bit in the product of any fractional
multiplication.)

3.3 Filter Calculations Using the Residual
Coefficients

Now that we have encoded the double-precision
coefficients, we are ready to perform the digital filtering
itself. We tally five double-precision coefficients for
the standard second-order section plus two single-pre-
cision coefficients for the truncation error cancellation
network. This is equivalent to 12 single-precision
coefficient multiplications in terms of computation time.
The price we have paid for these hi-fi filters is an amount
of computation that exceeds that for the basic second-
order section by a factor of roughly 12/5. (In compar-
ison, for a 24/48-bit architecture the expense factor
would only be 7/5 because all the coefficients would
be in single precision which, of itself, entails even less
housekeeping.)

To justify the use of single-precision coefficients in
the error cancellation network, refer to Fig. 14. There,

y(n) = [Zax(n — i) + Zeaix(n — D]
+[Eby(n — ) + Zebiy(n — i)

+ Shie(n — i) 22)
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where for the sake of less nomenclature, we call the
double-precision coefficient the same as the floating-
point coefficient since

c; + ec; = Cf;
(double precision on the left, floating point on the right).

‘Eq. (22) is the one that is actually implemented in
the code in Appendix 1.

Using Eq. (6), we can rewrite Eq. (22) as

y(n) = Za;x(n — i) + Zeapx(n — i)

+ [Shy(n — i) — Zbe(n — )]

+ [Zeby(n — i) — Zebje(n — )]

+ She(n — i) . (23)
Using Eq. (20) and simplifying, we get
y(n) = Zapx(n — i) + Zbpy(n — i0)

— Zebje(n — i) . 24

If we compare Eq. (24}, which is the single-precision
case of truncation error cancellation, with Eq. (16),
aside from the use of double-precision coefficients in
Eq. (24), the only difference is the (last) error term in
Eq. (24). This excess error term arises because we
chose not to use double-precision (that is, the same)
coefficients in the error cancellation network. Ideally,
we would like to use double-precision error cancellation
coefficients. Keep in mind that perfect truncation error

x ()
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cancellation, as in Eq. (15), is not dependent on the
precision of the error feedback coefficients. The signal
feedback coefficients must be equal to the error feedback
coefficients. In that case, the error feedback becomes
error “cancellation.”

If we look at Eq. (24) in the frequency domain, using
Eq. (6) to derive an expression for Y(z), then we get
an excess error term at the truncated output that looks
like this:

1 - E(bpi -_ebi)z_i

E(Z) 1 - EbFiZ—i

(25)

If the eb; are small, then the numerator of this error
function should approximately cancel the denominator,
which comprises the filter poles. The use of single-
precision coefficients in the error cancellation network
is probably sufficient in most cases except those de-
manding high precision, which encompass filters of
high Q factor or (extreme) critical frequency close to
dc or Nyquist. Recalling that the eb; are bounded in
magnitude by (0.5)279¢, then the eb; will be smallest
when the b; have the greatest possible precision (that
is, the highest resolution). So we now have a theoretical
reason to prefer the greater precision Q14 representation
of the single-precision part &; of the double-precision
coefficient bg; rather than the Q12 representation that
is used in our TMS code at the present time.

3.4 Residual Coefficient Implementation

When we get down to writing the actual program
code for Eq. (22), since the residual coefficients are
encoded using a scale factor, they must be accumulated
separately. The error cancellation term must also be
accumulated separately, but for a different reason. It

¥

Fig. 14. Truncation error cancellation and residual coefficient coding. See TMS code in Appendix | for implementation of

path alignment.
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is because the error signal e(n) is not QO as are the
input and truncated output signals; it is Q12, the same
Q value as the single-precision coefficients. The most
efficient order of calculations is to first group all the
residual coefficients, then perform the truncation error
cancellation, and finally the single-precision coeffi-
cients.

Both the error cancellation and the residual accu-
mulation must provide for worst-case headroom in the
accumulator. Overflow is not acceptable at these stages
in the calculations because they are nonlinear. In the
case of the residual accumulation, since the input and
output signals are QO and the magnitude of each of the
five residual coefficients never exceeds 0.5, a potential
overflow factor of 2.5 requires that there be two head-
room bits. Thus the residual coefficients need to be in
Q14 format (ge = 14). After the residual coefficient
scale factor 29¢ is accounted for, the accumulator ends
in Q26 format.

In the case of the error cancellation, the Q12 error
signal has a maximum magnitude of 1.0, whereas the
Q12 feedback coefficients are bounded in magnitude
by 2.0 and 1.0, respectively. Therefore a potential ov-
erflow factor of 3.0 again requires two headroom bits.
But the accumulator will be in Q24 at the end of the
error cancellation accumulation. This means we can
toss up to five of the MSBs; in the code we discard
four for the sake of convenience.

When these two separate accumulations are combined
with the accumulation of the single-precision coeffi-
cients, we may then take advantage of the infinite ac-
cumulator headroom and disregard intermediate ov-
erflow, as discussed earlier.

Refer to the TMS320 code in Appendix 1 for an
explicit presentation of all the principles discussed in
this paper.

3.5 Going Further Still

The purpose of residual coefficient coding is to make
the actual frequency response more closely resemble
the shape of the theoretical frequency response, while
one purpose of truncation error feedback is to make
the actual frequency response less dependent on absolute
input signal level. The most straightforward way to
predict the effects of coefficient quantization on transfer
function is to use the desired precision coefficients in
the theoretical computation of the transfer. This tech-
nique is a valid first-order approximation of the truth
and will show the trends of shift in frequency response
due to the drift of the pole—zero locations. While coef-
ficient resolution primarily affects the shape of the filter
transfer and stability, its impact on noise performance
and other signal quantization effects is second order.
Coefficient quantization alone does not make the digital
filter a nonlinear system. The best method to predict
all quantization effects on frequency response is to
take the Fourier transform of the actual impulse response
of the filter under study. Programs to do this are avail-
able; one such program is included in a filter design
package from Signix Corp. [15], which can calculate
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the FFT of up to 8192 points (version 1.5). Very low
critical frequency filters may need more points to capture
the complete impulse response.

4 FORCED OVERFLOW OSCILLATIONS

In the first three sections we have covered the most
important topics concerning the implementation of
digital filters. The current topic concerns the nonlinear
behavior of second-order digital filters once output ov-
erflow with saturation has occurred and the input re-
mains nonzero. While it is important that the practicing
engineer be made aware of this potential problem, this
topic is not essential to the understanding of the other
material. This phenomenon, it must be stressed, is
characteristic of many digital filter topologies and is
not peculiar to our particular implementation. All the
error feedback techniques we have shown have been
reported to minimize this problem which we are about
to discuss [29]. The simplest means of circumventing
forced overflow oscillations is to ensure somehow that
the filter output will not exceed unity.

4.1 Statement of the Problem

Recall that our direct form I structure is immune to
overflow problems at internal nodes as long as the
output is constrained to be less than unity. When the
saturating output tries to exceed unity, all bets are
off —linear analyses no longer apply and the filter output
can be observed, under the proper circumstances, to
“lock up” in a mode of oscillation which follows the
input frequency but not its amplitude or phase. At the
instant this lock-up response occurs, the output phase
can be observed to jump suddenly to a new value, which
is frequency dependent but difficult to predict. The
input signal is present during this form of instability,
which is the reason for the term forced overflow os-
cillation. The oscillation will cease when the input
signal is taken away (brought to zero). Unfortunately
our venerable error feedback techniques cannot help
us because the output is no longer representable at the
allotted bit width, causing the truncation errors to be
themselves in numerical error.

If the input signal is merely reduced in amplitude,
then the filter will return to its linear behavior after the
input amplitude has dropped to a level that can be con-
siderably lower than the level that elicited the response.
(This return to linear behavior will happen, assuming
that output overflow detection is performed on a per-
sample basis, as previously discussed.) Conceptually,
there is an input level hysteresis-loop function that
describes this lock-up mode of the filter. The amount
of hysteresis is primarily dependent on the pole posi-
tions.

A rule of thumb for sinusoidal input signals is this:
if the input frequency is below the pole frequency,
then there will be no forced overflow oscillation Ays-
teresis, that is, the oscillations will stop as soon as the
input stops overdriving the filter. But when the reverse
is true, when the pole frequency is lower than the input
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frequency, there will be hysteresis. We will, shortly,
be more precise in our definition of exactly when the
problem occurs, but this rule of thumb is good for
filters having poles at less than half Nyquist.

The topic of forced overfiow oscillations should not
be confused with the more widely researched topics of
overflow oscillations and limit cycles. These are the
only two types of low-level autonomous oscilla-
tions possible in digital filters. We briefly present them
here.

4.1.1 Overtiow Oscillations

Autonomous overflow oscillations will occur if output
saturation is not implemented upon the detection of
overflow there. (Remember we do not saturate inter-
mediate results.) This type of instability is self-sus-
taining once activated, and is due to the wraparound
(modulo) characteristics of 2’s complement arithmetic.
Output saturation eliminates the problem for second-
order filters, and so we can dispense with it entirely
[30]. It would be nice if saturation solved the forced
overflow oscillation problem, but it does not. The fun-
damental difference between this and forced overflow
oscillation is that these oscillations will sustain under
zero and nonzero input conditions, while forced ov-
erflow oscillations only occur under nonzero (large-
signal) input conditions.

4.1.2 Limit Cycles

Limit cycles, on the other hand, are a problem due
to the inherent nonlinear nature of digital filters pro-
voked by numerical inaccuracies in the signal paths.
Limit-cycle oscillations can be sustained under the
condition of zero input and are dependent on initial
conditions. Activation of limit cycles does not require
an overflow mechanism; this is the primary conceptual
difference. Nonzero inputs usually break them up, once
activated. The cause of these oscillations can be under-
stood intuitively if we realize that even when digital
filters are operating in their “linear mode,” they are
still nonlinear devices to a second degree because of
the quantization of the internal signals and the truncation
errors. “Digital” filters, by definition, operate on signals
that are discrete in both time and amplitude. Therefore
no matter what number of bits are being used in the
signal path, there will always be the possibility of limit-
cycle oscillations in the standard direct forms. The
amplitude of these oscillations can be quite large, al-
though typically small and annoying, and the problem
worsens when rounding as opposed to truncation is
used. Indeed, Chang [31] has shown that limit-cycle
oscillations are impossible in first-order digital filters
when truncation is used. This limit-cycle problem has
usually been solved in the past by increasing the number
of bits in the signal paths, which reduces the amplitude
of the oscillations to “acceptable levels.”

In the error cancellation and feedback schemes we
have presented, we diminished the impact of the trun-
cation errors by constraining them to appear only at
the output node. We accomplished this by canceling
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or minimizing the truncation errors which fed back
into the circuit, and by retaining full precision multi-
plications. Hence the internal signal paths appear much
wider than they actually are because we succeeded in
preventing a buildup of truncation noise along those
paths. The net effect is the same as it would be had we
actually increased the signal bit width. The amplitude
of any potential limit cycle is greatly minimized com-
pared to that using no form of error cancellation. Thus
using cancellation/feedback (ESS) techniques, we
succeed in linearizing the digital filter to a much higher
degree than do conventional implementations. Indeed,
Higgins and Munson [16] showed that these ESS
schemes quickly approach statistical equivalence to
double-precision implementations, which in itself
guarantees significantly improved limit-cycle suppres-
sion. Going one step further, Chang [31] showed that
for specific values of the error feedback coefficients,
limit cycles could be eliminated completely. Those
values include the case of truncation error cancellation
discussed.

In summary, using ESS techniques, one is able to
suppress limit cycles to well below the 16-bit level.
We will not examine limit cycles further here because
thorough treatments can be found in most standard DSP
texts.

4.2 Reglon of Forced Overflow Oscillation

Fig. 15 shows the second-order digital filter section
under study here. Only the feedback paths are shown
because the feedforward paths do not contribute to this
problem. The saturation arithmetic shown at the output
of the accumulator is in keeping with the assumptions
we have made thus far. Fig. 7 shows our implementation
of the truncator and saturator operators as found in the
code in Appendix 1. We believe that their ordering is
not critical; this figure is only included here for ref-
erence. The truncator is not critical in this analysis
and so it is omitted in Fig. 135.

Fig. 16, taken from [32], shows a typical forced
overflow oscillation at the output when a sinusoid ov-
erdrives the circuit. We talked about the observation
that the forced overflow oscillation seems to be worse
when the input frequency is above the pole frequency,
that is, it is harder to recover from it. Let us hypothesize
a possible explanation for this by guessing that recovery
time is somehow related to the impulse response of the
filter. Let us loosely define “recovery time” as the time
it takes for the circuit to stop oscillating once the input
signal has been removed.

If we talk about an input sinusoid whose amplitude
is just slightly above unity, then it is really just the
peaks of that sinusoid which overdrive the unity gain
filter. Then let us guess that the input amplitude hys-
teresis phenomenon has to do with the fact that a high-
frequency input sinusoid has peaks which occur at a
rate that is too fast for the overflowed filter to recover
from. Because the filter does not have adequate time
to recover from this nonlinear mode, it is necessary to
bring the input amplitude far enough below unity so
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that the corresponding amplitude of the filter’s impulse
response becomes attenuated. This in turn reduces the
time required before the internal computations (con-
volutions) are once again representable at the allocated
bit widths. Conversely, when the input sinusoid has a
frequency that is below the pole frequency and its am-
plitude is just above unity, then the overflowed filter
has plenty of time to recover and it is not necessary to
bring the input amplitude back down much below unity.

Although this explanation may be oversimplified,
having used the linear impulse response in the expla-
nation of a nonlinear phenomenon, Claasen and Kris-
tiansson [33], [34, p. 515] proved in 1975 that a nec-
essary and sufficient condition for the existence of forced
overflow oscillations is

|bh(m)| > 1, for somen = 0 — @ (26)
where b, is the second-degree feedback coefficient and
h(n) is the impulse response of the ideal linear second-
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order digital filter.

Using the residue theorem, the impulse response of
the filter shown in Fig. 15 can be derived from its
transfer

i
H@) = 1~ bzl —~ bzt
i
- * 27
(1 - pz7ha - pz7h @)
as
n+l N+l
h(n) = p____(p*) , n=0-o® (28)
p—p

where p = re!® is the pole and p* is the conjugate pole
of this second-order system. (Note that consideration
of zeros in the numerator of Eq. (27) would only change

y {n)

3
4
1.

-0.

o120

Ll T T
.00 1.00 2.00 3.00

Fig. 16. Typical forced overflow response for sinusoidal input. (© 1983 IEEE [32].)
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the absolute magnitude of the consequent impulse re-
sponse, but not its shape.)
We can rewrite Eq. (28) in its polar form as

h(n) = pr 0202 (29)

where r is the pole radius in the z plane and 6 is the
pole angle in the upper half-plane. The pole radius r
must be within the unit circle for stability, as is well
known.

For 6 very close to 0 or m,

h(n) = (n + Dr"*, 6 near dc or Nyquist .

Relating the poles within Eq. (27) to the actual filter
coefficients, it is straightforward to show that for the
positive topology

by = 2rcos ®
by, = —r?. 30)

The filter stability expressed in terms of the filter
coefficients b, and b, is illustrated by the stability tri-
angle in Fig. 17. All coefficients within the triangle
produce stable filters.

Now it is easy to see that there may easily be forced
overflow oscillations for poles near dc or the Nyquist
since there, by substituting Eq. (30) and the approxi-
mation to k(n) into the criterion, Eq. (26),

l(n + D2 > 1,

0 near 0 or

forsomen = 0 — = |
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it is not hard to find an n for which it is true.

Fig. 17, taken from [32], {34], shows the coefficient
regions shaded within the stability triangle for which
the second-order digital filter is likely to have a forced
overflow problem. The trend of the problem area is for
values of b; close to —1, which implies that the problem
is more severe for filters whose poles are close to the
unit circle. The trend as it pertains to b, shows problems
for filters whose poles lie near dc or Nyquist. Notice
that the problem areas are symmetric with respect to
the b, axis, and that there appear nulls for particular
values of b; for which no forced overflow oscillations
are possible.

Fig. 17 suggests possible recovery schemes that in-
volve the modification of the coefficients to bring them
into safe regions. This solution implies that the filter
transfers could be changed momentarily to solve the
problem when it occurs. This may not be attractive in
some circumstances. It may be more desirable to scale
input amplitude. A nonlinear approach such as that
described by Claasen and Kristiansson in [29] may be
more effective. The technique they describe employs
a feedback circuit that only comes into play when ov-
erflow occurs. Assuming there is some headroom in
the accumulator, they feed back the difference between
the saturated output and the actual value of the over-
flowed signal. Under normal circumstances of linear
operation, this difference is zero, so nothing gets fed
back.

4.3 Forced Overflow Summary

Our goal is to make the DSP engineer aware of this
problem. Interestingly enough, there are only a handful
of research papers on this subject, and after all is said
and done, the solution typically offered is to simply
reduce the input amplitude; this is now the best solution

Fig. 17. Stability triangle for positive topology. Shaded region shows where forced overflow oscillations can oceur. (© 1982,

[EEE [32}. [34].)

874

J. Audio Eng. Soc., Vol. 36, No. 11, 1988 November



PAPERS

[35]. But whose responsibility is it to do so, the filter
architect’s or the end-user’s?

5 CONCLUSIONS

One thing that has become eminently clear during
the course of this research is that, in terms of noise
performance, we could have extremely high fidelity
(transparent) digital filtering if we used 24-bit signal
paths. For the most demanding applications, the 16/
32-bit processors just will not do, unfortunately. 24-
bit signal paths will not, however, obviate the use of
truncation error cancellation. 32/64-bit processing
would be needed to perform brute-force digital filtering
using no truncation error cancellation. But note that
24/48-bit processing with truncation error cancellation
will outperform the 32/64-bit system and can be up to
8 bits (48 dB) better becausc the 32/64-bit system can
only hold the noise down to the 16-bit boundary. We
have also learned that 24-bit coefficients have sufficient
accuracy for most audio frequency filtering require-
ments. From this perspective, a 24/48-bit version of
the TMS320 series of DSP chips would be ideal.

Too often the lesson has been learned that the num-
ber and orders of the filters designed are determined
not by the desired transfer characteristics, but by the
sheer processing power of the implementation. For
this reason, commercial filter design packages should
be amended so that the principal constraint is the
filter order rather than band tolerances. The program
would then yield the best possible design for the given
filter order.

The primary contribution of the topics we have
covered is to dispel some popular myths, particularly
those concerning input scaling, internal overflow,
and the assumptions of “white” noise (“random”) error
sources. We have found that our truncation noise re-
duction techniques also serve to eliminate autonomous
limit-cycle oscillations, while output saturation en-
sures freedom from autonomous over flow oscillations.
Having hurdled these barriers, we have nearly reached
the ideal in digital filtering. There is always room
for more work, and we suggest that the most elegant
solution to forced overflow oscillation is still unclear.
The solution may surface in the area of chaotic system
theory.

6 TENETS OF DSP FILTER IMPLEMENTATION

1) Overflow is not always a bad thing.

2) Truncation noise can be controlled at the expense
of computational intensity. The degree of intensity de-
termines the amount of control.

3) Signed multipliers are useful for double-precision
calculations without loss of accuracy or efficiency.

4) Floating-point mathematics alone in a DSP chip
does not solve the truncation noise problem [36], [37].
Numerical resolution determines noise performance.
Resolution is determined by the mantissa bit width.
Truncation of the mantissa to less than the required 2N
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bits prior to accumulation increases truncation noise
recirculation.

5) Dynamic range is not the same as signal-to-noise
ratio (SNR). Dynamic range is the ratio of the largest
to the smallest perceptible signal level. Since signals
well below the noise floor are perceptible by humans,
the dynamic range specification often exceeds SNR. It
is often made commensurate with the 6-dB-per-bit PCM
criterion, but even this can be excecded by proper dith-
ering [38]. Dynamic range, then, is determined by the
digital signal processing. SNR is the ratio of the largest
signal representable to the noise floor with no signal
present. In digital systems it is probably more mean-
ingful to have a term for that ratio when signal is present:
this we call THD + N. Included in it are harmonic
distortion, the noise floor, and all other artifacts intro-
duced by the digitization of the signal itself.

6) Coefficients of second-order sections may be lin-
early interpolated for smooth transitions to target filters
without intermediate instabilities. The same is not
guaranteed for direct higher order filters (except lad-
ders). The interpolated coefficients must be encoded
in double precision for smooth transitions.

7) The propagation delays of digital filters are no
worse, in general, than for the corresponding analog
implementations.

8) DSP chips should have the capability of shifting
the entire accumulator in place and at once in either
direction to facilitate the alignment of the intermediate
accumulations in the realization of the techniques pre-
sented herein. The program-controlled realignment of
the product register into the accumulator is also useful.
(TMS32020 and TMS320C25 have these capabilities.)
DSP chips must be designed to handle the access of
long delay lines of any modulo and with nonequispaced
taps. DSP chips need to be able to detect overflow out
of several of the high-order accumulator bits below the
MSB, not just from the MSB.

7 ACKNOWLEDGMENT

The author is indebted to the following people for
their contributions to this paper: Richard Cabot of Audio
Precision, Hayley Greenberg of Analog Devices, Tom
Hegg of Lexicon, and Dana Massie of Next.

8 REFERENCES

[11 J. A. Moorer, “The Manifold Joys of Conformal
Mapping: Applications to Digital Filtering in the Stu-
dio,” Audio Eng. Soc., vol. 31, pp. 826-841 (1983
Nov.).

{21 E. M. Cherry, “Transient Intermedulation Dis-
tortion—Part I: Hard Nonlinearity,” IEEE Trans.
Acoust., Speech, Signal Proc., vol. ASSP-29, p. 137
(1981 Apr.).

[3] L. B. Jackson, J. F. Kaiser, and H. S. McDonald,
“An Approach to the Implementation of Digital Filters,”
1EEE Trans. Audio Electroacoust., vol. AU-16, p. 413
(1968 Sept.).

875



DATTORRQ

[4] A. V. Oppenheim and R. W. Schafer, Digiral
Signal Processing (Prentice-Hall, Englewood Cliffs,
NI, 1975).

[5] L. B. Jackson, Digital Filters and Signal Pro-
cessing, st ed. (Kluwer Academic Publishers, Boston,
MA, 1986).

[6] J. D. Markel and A. H. Gray, Jr., “Fixed-Point
Implementation Algorithms for a Class of Orthogonal
Polynomial Filter Structures,” IEEE Trans. Acoust.,
Speech, Signal Proc., vol. ASSP-23, p. 486 (1975
Oct.).

{71 R.C. Agarwal and C. S. Burrus, “New Recursive
Digital Filter Structures Having Very Low Sensitivity
and Roundoff Noise,” [EEE Trans. Circuits Sys., vol.
CAS-22, p. 921 (1975 Dec.).

{8] L. B. Jackson, “Roundoff Noise Bounds Derived
from Coefficient Sensitivities for Digital Filters,” IEEE
Trans. Circuits Sys., vol. CAS-23, p. 481 (1976 Aug.).

[9] K. W. Martin and M. T. Sun, “Adaptive Filters
Suitable for Real-Time Spectral Analysis,” /EEE Trans.
Circuits Sys., vol. CAS-33, p. 218 (1986 Feb.).

[10] A. B. Carlson, Communication Systems, An
Introduction 1o Signals and Noise in Electrical Com-
munication, 2nd ed. (McGraw-Hill, New York, 1975).

[11] P. S. R. Diniz and A. Antoniou, “Low-Sensi-
tivity Digital-Filter Structures Which Are Amenable
to Error-Spectrum Shaping,” IEEE Trans. Circuits Sys. ,
vol. CAS-32, p. 1000 (1985 Oct.).

[12] H. T. Nagle, Jr., and V. P. Nelson, “Digital
Filter Implementation on 16-Bit Microcomputers,”
IEEE Micro Mag., p. 23 (1981 Feb.).

[13] L. Kristiansson, “Jump Phenomenon in Digital
Filters,” Electron. Lert., vol. 10, p. 14 (1974 Jan. 24).

[14] Philips Corp., “News Report on Philips 16-Bit
Digital to Analog Conversion System,” Elcoma Mar-
keting Communications Group, Bldg. BA, Eindhoven,
The Netherlands, News Rep. 82906 (1982 Apr. 16).

[15] J. O’Donnell, “Digital Signal Processing Soft-
ware— For the Evaluation of Digital Filters,” Signix
Corp., 19 Pelham Island Road, Wayland, MA 01778,
DISPRO version 1.5 (1986).

[16] W. E. Higgins and D. C. Munson, Jr., “Optimal
and Suboptimal Error Spectrum Shaping for Cascade-
Form Digital Filters,” IEEE Trans. Circuits Sys., vol.
CAS-31, p. 429 (1984 May).

{17] H. A. Spang 111, and P. M. Schultheiss, “Re-
duction of Quantizing Noise by Use of Feedback,” IRE
Trans. Communic. Sys., vol. CS-10, p. 373 (1962
Dec.). Reprinted in Waveform Quantization and Coding
(IEEE Press, New York, 1976).

[18] C. T. Mullis and R. A. Roberts, “An Interpre-
tation of Error Spectrum Shaping in Digital Filters,”
IEEE Trans. Acoust., Speech, Signal Proc., vol. ASSP-
30, p. 1013 (1982 Dec.).

(19] D. C. Munson, Jr., and B. Liu, “Narrow-Band
Recursive Filters with Error Spectrum Shaping,” [EEE
Trans. Circuits Sys., vol. CAS-28, p. 160 (1981 Feb.).

(20] W. E. Higgins and D. C. Munson, Jr., “Noise
Reduction Strategies for Digital Filters: Error Spectrum
Shaping versus the Optimal Linear State-Space For-

876

PAPERS

mulation,” IEEE Trans. Acoust., Speech, Signal Proc.,
vol. ASSP-30, p. 963 (1982 Dec.).

[21] B. C. Rothaar, “A Digital Audio Tone Control,”
M.S. Thesis, Dept. of Computer Science, University
of Utah, Provo (1982 June).

[22] G.R.Cooperand C. D. McGillem, Probabilistic
Methods of Signal and System Analysis (Holt, Rinehart
& Winston, New York, 1971).

[23] A. I. Abu-El-Haija and M. M. Al-Ibrahim,
“Improving Performance of Digital Sinusoidal Oscil-
lators by Means of Error Feedback Circuits,” IEEE
Trans. Circuits Sys., vol. CAS-33, p. 373 (1986 Apr.).

[24] C. W. Barnes, B. N. Tran, and S. H. Leung,
“On the Statistics of Fixed-Point Roundoff Error,” IEEE
Trans. Acoust., Speech, Signal Proc., vol. ASSP-33,
p. 595 (1985 June).

[25] I. M. Halbert and R. A. Belcher, “Selection
of Test Signals for DSP-Based Testing of Digital Audio
Systems,” J. Audio Eng. Soc. (Engineering Reports),
vol. 34, pp. 546555 (1986 July/Aug.).

[26] G.T. Yan, “New Digital Notch Filter Structures
with Low Coefficient Sensitivity,” IEEE Trans. Circuits
Sys., vol. CAS-31, p. 825 (1984 Sept.).

[27] S. C. Bass, J. W. Grundmann, and S. E. Belter,
“DINAP II: A Digital Filter Analysis Program,” School
of Elec. Eng., Purdue University, West Lafayette, IN,
TR-EE 78-14 (1978 Mar.).

[28]) Texas Instruments, “TMS32010 User’s Guide,”
Digital Signal Processor Products Division, Houston,
TX, Doc. SPRUOOCIB (1985).

[29] T. Claasen and L. Kristiansson, “Improvement
of Overflow Behaviour of 2nd-Order Digital Filters by
Means of Error Feedback,” Electron. Letr., vol. 10,
p- 240 (1974 June 13).

[30] P. M. Ebert, J. E. Mazo, and M. G. Taylor,
“Overflow Oscillations in Digital Filters,” Bell Sys.
Tech. J., vol. 48, p. 2999 (1969 Nov.).

[311 T. L. Chang, “Suppression of Limit Cycles in
Digital Filters Designed with One Truncation Quan-
tizer,” IEEE Trans. Circuits Sys., vol. CAS-28, p. 107
(1981 Feb.).

[32] H. Samueli and A. N. Willson, Jr., “Nonper-
iodic Forced Overflow Oscillations in Digital Filters,”
IEEE Trans. Circuits Sys., vol. CAS-30, p. 709 (1983
Oct.).

[33] T. Claasen and L. Kristiansson, “Necessary and
Sufficient Conditions for the Absence of Overflow
Phenomena in a Second-Order Recursive Digital Filter,”
IEEE Trans. Acoust., Speech, Signal Proc., vol. ASSP-
23, p. 509 (1975 Dec.).

[34] H. Samueli and A. N. Willson, Jr., “Almost
Period P Sequences and the Analysis of Forced Overflow
Oscillations in Digital Filters,” IEEE Trans. Circuits
Sys., vol. CAS-29, p. 510 (1982 Aug.).

[35] P. K. Sim and K. K. Pang, “Effects of Input-
Scaling on the Asymptotic Overflow-Stability Properties
of Second-Order Recursive Digital Filters,” /EEE
Trans. Circuits Sys., vol. CAS-32, p. 1008 (1985 Oct.).

[36] J. A. Moorer, “The Audio Signal Processor:
The Next Step in Digital Audio,” Collected Papers

J. Audio Eng. Soc., Vol. 36, No. 11, 1988 November



PAPERS

Jrom the AES Premiere Conference on Digital Audio
(Rye, NY, 1982 June 3-6), pp. 205-215.

[37] B. Liuand T. Kaneko, “Error Analysis of Digital
Filters Realized with Floating-Point Arithmetic,” Proc.
IEEE, vol. 57, p. 1735 (1969 Oct.).

[38] J. Vanderkooy and S. P. Lipshitz, “Resolution
Below the Least Significant Bit in Digital Systems with
Dither,” J. Audio Eng. Soc., vol. 32, pp. 106113
(1984 Mar.).

APPENDIX 1
TMS320 CODE

A tested real-time TMS32010 source code follows.
This code runs at 25.60576 MHz, +=0.01%, on a
TMS320C10-25 for a 50.4-kHz maximum sample rate.
There are two filters maximum, executable per sample
having double-precision coefficients, single-precision
truncation error cancellation, and overflow detection
and saturation. This leaves a headroom of 15 instruction
cycles out of a maximum of 127 to perform noncritical
functions in a fragmented outer executive loop.

AR R ARk RN N R R kR RN ARARA AN AR A AR AR AN RR AN RN A AR AN N RA R
LSRR AR AN AR AR NN FIIRQEING ARRRRA G R R AA R R AR NA R R
FILTER

BIOZ  FILTER * JOND - 1987

™ MNL, 2

I INDEX, 3 * GET COEFFICTENT
LAC INDEX “  ¥OR QUTER LOOP
AND MBK4

SACL  INDEX

LAR  ARO, INDEX

N .2

ouT YNR, 2 * 14 INSTR.

AARAMRRNAAA LENT CHANNEL ARRANSRAkARRhaann
* PERFOFM RESIDUAL COBFFICIENT CALCULATIONS

ZAC
LT KNM2L * Q0
MPY EA2L * 014

LTA XNL
MPY EACL
LYA YNM2L

APAC * 26 INSTR,
»* * WANT HEADROQM IN ACCUMULATOR
SACH  RESID * DIVIDE BY 2#%12 => RESID IS Q10
* END RESIDUAL COEFFICIENT CALCULATIONS

LAC *%+ PERFORM ERROR FEEDBACK CALCDLATIONS
LT EONM2L * STORED SUCH THAT IS NEGATIVE Q12
HPY B2L * Q12
LTD EOFNL * REALLY EONMIL
MPY Bl1L * P REGISTER RESULT IS Q24
APAC
SACH  TEMP, 4 * INTERMEDIATE ERROR TERM Q12
*4¥ NOW DO SINGLE P’RBCISIDN COEFFICIENTS
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XOR SIGN * ARE M3Bs DIFFERENT?
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Mexwrawdine RIGHT CHANNEL (in csscade with LEFT) #tatssewtaskaxanx
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HOW TO DETECT OUTPUT OVERFLOW

We store the Q0 output y(n) from a 32-bit accumulator
which is in Q12 format. The accumulator is Q12 because
we chose to perform the single-precision (Q12) coef-
ficient accumulation last. {See the TMS320 code in
Appendix I, right before “CHECK FOR OUTPUT
OVERFLOW.”) Since y(n) is a 16-bit Q0 number, we
are left with 4 bits of visible headroom in the accu-
mulator above the sign bit of (»). If no output overflow
has occurred, then these “headroom” bits should each
be a copy of the sign bit of y(n). This suggests a simple
way to detect output overflow, then. If any of the 5
MSBs in the accumulator differ from the others at the
time that y(n) is stored, then output overflow must
have occurred. Since we really do not have a clue as
to the extent of the overflow, our best guess is that the
proper sign of the output should be the same as the
MSB of the accumulator. Using that information, we
should saturate the output under program control. The
4 headroom bits will allow us to detect output averflow
up to 24 dB past unity.

The TMS320 code to perform output overflow de-
tection/saturation is shown in the program. Notice that
the use of the XOR operating with the magic number
CEILIN (= 32766) on the sign of the Q12 accumulator
obviates the need for conditional branching to saturate
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at the proper polarity. This detection/saturation routine
takes 10 TMS320 instruction cycles per filter stage.
This is a significant portion of the code and is almost
as long as the basic IIR filter calculation itself. Un-
fortunately this code is inextricable for high-quality

PAPERS

audio work. The ADSP-2100, in contrast, has 8 hard
overflow bits annexing its 32-bit accumulator. It has
a single instruction monitoring the sameness of the 9
MSBs. We should expect quite a code reduction using
it.
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