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The question of true requirements regarding 
phase shift tolerance in audio systems is re- 

opened. No need for phase delay linearity can be 

justified for music signals. The actual require- 
ment is a tolerance of 2 ms for group delay 
through the parallel channels (woofer and squawk- 
er) of a speaker. Simulated drum tone experi- 
ments are reported to verify this well known num- 

ber, 2 me. Group delay in the highly desirable 
3rd order Butterworth crossover network is found 
to be identical in high and low pass channels. 
Phase shift in transducers causes the phase 
troubles in speaker systems. An idealized two 

way speaker combines the response of the trans- 
ducers into the crossover network and solves all 

of the phase shift related problems in a two way 
speaker. 

1. The Questions 

Is phase linearity needed in loudspeakers? 
Does time alignment make am audible difference? 

What is the true bound on phase shift in an audio 

system? These are among the many questions usu- 

ally asked regarding the topic of phase shift and 
time delay in all kinds of audio systems. The 

people willing to give answers fall into two 

camps: 1) The phase shift is not important fol- 
lowers of Helmholtz, or 2) Phase linearity is 

needed. Since the conventional wisdom of time 
alignment is readily "understood" by the loud- 

speaker buyers, those in the second camp are 

making more money than those in the first camp. 

Still, the questions deserve scientific answers 
and those of us in camp 1 would like to be able 
to explain why time alignment is not needed in a 
state—of—the—art loudspeaker system. 

2. What is Music? 
The most important answer is that music is 

what I want to sound good coming out of my speak- 
er. If using pulses, square waves, tone bursts, 
etc., as test signals will tell me something use- 
ful regarding music reproduction, then I will be 

happy to use these signals. But, I see no need 
to place demands on my speaker regarding the time 
domain oscilloscope pictures of pulse or impulse 

response. 
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The original analyses of music considered 
only the steady state portions of a tone——say the 
middle of a long bowed note on a violin. Based 
on some simplifying assumptions, the vibration is 
found to be periodic with integer relationships 
between the eigenfunctions; that is, we can model 
the sound radiated by 

p(t) C exp(2nnft + 0m (1) 

where n is a precise integer. We have generated 
a signal consisting of fundamental and second 
harmonic with variable 02. We have yet to find a 
subject who can detect change in 02, even when 
his hand is on the control knob. Li] 

We have also repeated several other authors' 
experiments of this kind and not verified the 
authors' contentions regarding audibility of 
phase shift. The usual flaw we find in the work 
of others is failure to consider linearity of the 
loudspeakers used. For example, we used a care- 
fully chosen and tested dynamic speaker in place 
of am electrostatic speaker in one experiment and 
did not hear the phase shift as claimed by the 
original experimenter. 

Regardless of the result of experiments 
based on precisely periodic signals, there is an- 
other more important reason why gradual phase 
shift is not audible. The above assumption that 
m is precisely integer is not correct. For our 
violin tone, the relatively soft end of the finger 
which sets the length of the string will set a 
slightly different length for the fundamental and 
the various harmonics; thus, n will not be pre- 
cisely integer. Now, 0 is a slow function of 
time——it is fortunate that we cannot hear phase 
shift. From another standpoint, the well temper- 
ed musical scale (based on a ratio between semi— 
tones of 12/v) creates musical intervals which 
are not the naturally expected integer harmonic 
relationship. We prefer to listen to this slight- 
ly discordant music where there is not a precise 
integer relationship. 

If phase requirements cannot be based on 
steady state music, then we must explore transient 
music. A stacatto note on a piano (Fig. 1) 
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Fig. 1. Sound pressure waveform for staccato 
middle C on a grand piano, a. 10 ms/div. 
b. 50 ms/div. 

or a single stroke on a drum (Fig. 2) 
are musical transients. Note that in the time 

domain they are not single pulses, impulses, or 

step functions. Instead, they are sinusoids am- 

plitude modulated by relatively long envelope 
functions. In the frequency domain, the energy 
is clustered in narrow packets near the expected 

eigenfrequencies. Time delay specifications must 
be concerned with delay of the envelope functions. 

3. What is Important about 

Most music is performed by groups of musi- 
cians numbering from 2 to 200. Spacings on the 

stage mean that tens of milliseconds can be ex- 

pected between, say, a cello playing at 110 Hz 
and the violin at 440 Hz, We must consider just 
a single instrument playing a short note and 
determine a tolerance on relative delay between 
the envelepe of the fundamental and the envelopes 
of the harmouics. 

To determine this tolerance, we have devised 
an experiment to simulate the drum tone on the 
Hitachi 505 hybrid computer. As shown in Fig. 3 
two groups of integrators are used to generate 
damped sinusoids. In listening, the lower fre— 
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quency signal by itself reminded our auditors of 
a heart beat. Adding in the next eigenfrequency 
(at the proper ratio of 2.29 times the fundament- 
al) markedly improved the naturalness of our drum 
tone simulation. 

Most subjects tested detected a subtle dif- 
ference in tone quality with 5 to 7 ms delay. Our 
most acute subject could detect 3 us. Thus, we 
conclude that the result by Hilliard of 2 us de- 
lay difference is a reasonable tolerance. This 

corresponds to a distance tolerance of some 70 cm. 
This makes us somewhat skeptical of the audibil- 
ity of time alignment changes where perhaps a 
quarter of this distance is involved. 

With this magic number, 2 ms, in hand, we 
must consider the sources of group delay differ- 
ences in loudspeaker systems. 

4. Group Delay in Crossover Networks 

We use as an example the third order Butter— 
worth low pass and mirror image high pass which 
we have found to be the most useful crossover 
network. The Butterworth polynomial is 

2 3 
B3(ju) 

= (1-u) j(2u-u) (2) 

b 

Fig. 2. Sound pressure waveform for one 
stroke on a 16—inch floor tom—tom. a. 100 
ins/div. b. 10 ms/div. 
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FIG. 3. A SIMULATED DRUM TONE EXPERIMENT. Td IS VARIABLE FROM ZERO TO SEVERAL SECON])S BY THE 
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TLS(ju) 
= U 

1-u +j• 
where u f /150 and Q1 

() with the corresponding group delay 

where u f/fc, normalized frequency. 

It is easy tci show that the group delay for 
either the high pass or the low pass filter is 

T = dO = 1 (2 + u2 + 2u4 
G dw o 6 C l+u 

It is a general result that any order Butterworth 
filter crossQver network will have equal group 
delay in both channels. For a 18 Hz (2,000 rad/ 
sec) crossover network, the maximum delay is 1 ms. 
Since there ts no difference in delay, the cross- 
over network causes no phase problems. 

5. Delay in Woofers and Squawkers 

Since any electroacoustic transducer behaves 
as a band—pass network, it will have group delay. 
For a two way speaker, we must consider the upper 
end of the woofer pass—band and the lower end of 
the squawker pass—band. For a 318 Hz crossover 
frequency, the woofer voice coil inductance will 
have to be controlled so that 

(6) 

(7) 

Tw(ju) 

The squawker has a maximum group delay of 1.5 mc 
compared to a quarter ms for the woofer. As a 
logical consequence, proper "time alignment" for 
this system would place the woofer 40 cm behind 

_____ _______ _________ the squawker. Have you ever seen one built like 
this? (Yes, the Klipsch Horn.) 

6. An Idealized Two-g Speaker 

We have just shown that the evil in loud— 
speaker systems is the phase shift in the tran— 
ducers. We have done numerous computer simula- 
tions to verify our contention that the best one 
can do using the conventional ideas of overlapof 

(4) bandpass of the woofer and squawker and 1st or 
3rd order crossover networks is to live with the 

where u f/600 Hz problem. In our simulations, we have added pure 
which leads to a group delay of time delay (phase delay equal to group delay) and 

the usual result is to help in one frequency band 
at the expense of harm in another frequency band. 

TDW 2 (5) The usual ideas of time alignment (moving the 
(271) (600) (1 + U ) squawker back w.r.t. the woofer) do not solve the 

true phase shift problems in a two—way speaker. A 10 cm cone diameter closed box squawker might 
have a transfer function 

1 
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FIG. 4. BLOCK DIAGRAM OF A NOVEL LOUDSPEAXER SYSTEM WHICH ELIMINATES GROUP 
DELAY DIFFERENTIAL CAUSED BY THE TRANSDUCER PHASE SHIFTS. 

We therefore deem it necessary and desirable 
to use the transfer characteristic of the woofer 
and of the squawker as part of the crossover 
characteristic. Recall that the 3rd order Butter— 
worth polynomial can be readily factored. 

B3(s) 
= + 2s2 + 2s + 1 

= (s l)(s2 ++ 1) (8) 

where Q 1 

Therefore, we achieve the low pass character- 
istic as the product 

1 1 
TL(s) = _______ _____________ 

s a u l+—+—-- c c U) 

and the high pass characteristics as the product 

c _________________ 
Hi l+—-- 

U) c 

It is obvious to the most casual observed 
(and, we pray, the patent examiners) that the 
speaker system shown in Fig. 4 overcomes all the 
group delay difficulties in a two—way loudspeaker 
system. 
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