
SIMD signal processing with NEON

�

firmware-developments  

SUMMARY

In a previous article (ref.1) we demonstrated how we use CortexM0 and CortexM4 to implement signal
processing algorithms where power and memory optimization are the key success criteria.

We detail here, one high-performance algorithm of our catalog.

IIR/BiQuad filters are a key building block used in digital signal processing. We describe a floating-
point filter implementation using advanced SIMD NEON.
The algorithm is optimized to consume less than 4 CPU cycles per sample on ARMv8 and 7.5 cycles
on ARMv7.

 �
 IIR / BiQuad filter  

https://community.arm.com/members/laurentlefaucheur/blogs

PROBLEM

We want to design an IIR / BiQuad filter, to process non-interleaved audio samples.

IIR filtering is a challenge for the firmware designer because the pipeline depth gives a limit to the
maximum data throughput, due to the recursive loops: you need to wait the computation of the
recursive path before saving the next samples. The longer the pipeline depth and the longer it takes to
compute the filtered audio samples.

There is quite a high number of audio channels in multimedia audio systems like the one found in
cars. Each channel of the original 5.1 format is processed through a cascade of IIR filters to
compensate the frequency response of each loudspeakers, and to give some specific user experience
depending on use-cases mixing (telephony, GPS voice, alarm, music, …). Consequently, the IIR filter
must be implemented with optimized codes for power and latency reasons.

 !  
 Extract of the data paths found in high-end multimedia mixers  

Time-to-market is a key business success criterion for the design of consumer products. Here are
some reasons to go with ARM processors and advanced SIMD NEON:

 • NEON is integrated in the trust zone area while security is at risk with external coprocessors.
 • NEON buses are integrated in the processor cache coherent interconnect which leads to low

latencies compared to solutions using external coprocessors with ping-pong buffers for data
exchanges.

 • NEON implements a floating point multiply-accumulation with a short pipeline depth.
 • NEON implements bypasses and late forwarding schemes between its out-of-order execution

pipelines for low-latency multiply-add operations.
 • The code development tools are supported by the open-source community.
 • Floating-point accelerates signal-processing firmware development cycles compared to fixed-

point arithmetic’s.
 • Floating-point improves the performance and the dynamic range, which is key for high-

resolution audio applications.
 

 !
 ARMv8 pipelines

 
SOLUTION

At Firmware-Developments we have cumulated years of expertise in firmware optimization
topics, both on the problems of signal quality, standards, patents and low foot-print fixed-point
implementations. We will tune for you this IIR program which has below characteristics:

 • Floating-point 32bits processing with blocks of 8 samples processed in the critical loop
 • Number of cycles/sample = 3.75: a block of 8 samples is processed in 30 cycles (ARMv8)
 • Number of cycles/sample = 7.5 (ARMv7)
 • Code written in C with pieces of ARMv7/v8 advanced SIMD NEON assembly.
 • Some instructions slots are free in the critical loop to insert other integer computations

without penalty.
 • We have a bit-exact binary executable running on PC

CONTACTS
Firmware Developments email : contact @ firmware-developments.com
Phone Number +33 698 846 090
Address : “Les Alcyons”, 5b Av. de l’Ilette, 06600 Antibes, France.

REFERENCES
1 Audio sample-rate conversion (SRC) on Cortex-M
https://community.arm.com/b/612ad1625710445eb3e17ec0b22dcc97/posts/audio-sample-rate-conversion-src-on-cortex-m

2 CortexA72 Software Optimization Guide.
http://infocenter.arm.com/

3 ARM Architecture Reference Manual ARMv8, for ARMv8-A architecture profile
http://infocenter.arm.com/

4 ARM CortexA Series - Programmer’s Guide for ARMv8-A
http://infocenter.arm.com/

5 ARMv8-A Reference Manual
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0487a.k_10775/index.html

6 Bit-exact simulator of the ARMv7 and ARMv8 codes of this IIR filter:
http://firmware-developments.com/WEB/DOC/ARM/ARM_NEON/SIMULATOR/

7 Choosing the Best Processor for your Audio DSP Application. AES137 (L. A. 2014)
http://firmware-developments.com/WEB/DOC/REF/pd8_beckmann.pdf

8 HARMAN Audio solutions
http://audioarchitect.harmanpro.com/

9 ARKAMYS Audio solutions
https://www.arkamys.com/news-in-audio-digital-sound-processing/

https://community.arm.com/b/612ad1625710445eb3e17ec0b22dcc97/posts/audio-sample-rate-conversion-src-on-cortex-m
http://infocenter.arm.com/
http://infocenter.arm.com/
http://infocenter.arm.com/
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0487a.k_10775/index.html
http://firmware-developments.com/WEB/DOC/ARM/ARM_NEON/SIMULATOR/
http://firmware-developments.com/WEB/DOC/REF/pd8_beckmann.pdf
http://audioarchitect.harmanpro.com/
https://www.arkamys.com/news-in-audio-digital-sound-processing/

